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Introduction 

Despite massive support from the old computer establishment the BASIC 

programming language has now been widely discredited at every level. 

There are various suitable alternatives available for home users, and as the 

market matures these are becoming increasingly popular. This book is 

about a powerful computer programming language called Forth. Because 

of the nature of this language learning about Forth means learning about 

the way that computers actually operate. This makes it the ideal choice for 

those who want to learn general computer skills through programming. 

The book is divided into the two sections. The first contains a general 

background to computers and programming languages. It assumes no 

previous experience. The second section teaches Forth ‘at the keyboard’ 

and relies on the reader having access to a standard version of Forth (and 

of course a computer to run it on!). Chapter 3 includes advice on how to 

choose a good system. 

Forth is a ‘living language’, which means that you can endlessly extend 

and improve your system. It also means that there is always more to learn. 

Even an experienced Forth programmer is constantly experimenting with 

new techniques and applications. This book can only describe the facilities 

Forth offers and point to some of the ways in which they might be used. It 

is only through programming itself that you can really master this unique 

language. 



Section 1: Background 



1 About computers 

1.1 A brief history 

Computing really began when man first started to count, and in this sense 

our fingers were the world’s first computers. These are fairly limited in 

their application, however, and particularly inconvenient when it comes to 

storing numbers over a period of time! This has encouraged mankind to 

develop more efficient methods of dealing with numbers. Some of the 

most notable of these (leaving aside computers for the moment) are the use 

of an abacus for performing calculations and paper and ink as a means of 

long term storage. At the lowest level these are the functions with which a 

computer is mainly concerned - the storage, retrieval and processing of 

numerical information. 

The first attempts to build automatic calculating machines were promp¬ 

ted by the rise of commerce in the seventeenth century. The most famous 

of these attempts was by man called Blaise Pascal. Later, in the eighteenth 

century, J. M. Jacquard built an automatic loom which used perforated 

cards as a means of storing its instructions. This development laid the 

foundations for an aspect of computing which is not merely concerned 

with the processing and storage of numbers, but with control over elec¬ 

tronic and mechanical devices. It also provided a guideline for methods by 

which instructions and information could be fed into the computer itself. 

The Analytical Engine designed by Charles Babbage in the nineteenth 

century is generally accepted as the world’s first digital computer, even 

though its construction was never completed. The basic elements of its 

design were to correspond almost exactly to those of a modern computer, 

despite its mechanical rather than electronic basis. Unfortunately Babbage 

was too far ahead of his time, in much the same way as Leonardo Da Vinci 

was in designing flying machines, and he lacked the necessary support 

technology to make his dream a reality. Thus neither he nor his co-worker 

Ada Lovelace were able to convince those funding the operation of the 

ultimate merits of their machine, and financial support was withdrawn. 

It was not until 75 years after Babbage’s death that the first electronic 

computer emerged in 1946. It was called ENIAC, which stands for Elec¬ 

tronic Numeral Integrator and Calculator. This huge machine occupied 

3000 cubic feet of space, contained 18000 vacuum tubes (valves), weighed 

30 tons and consumed 200 kilowatts of power. 
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Since ENIAC, important developments in computers have been marked 

by ‘generations’. The table gives a brief description with approximate 

dates. 

Generation Dates Description 

First 1945_1954 Valve computers. 
Second 1954-1965 Valves replaced by transistors. 
Third 1965-today Integrated circuits replace transistors; 

containing a number of transistors on 
the same ‘chip’ of semiconductor 
material. 

Fourth 1972- Large Scale Integration or LSI. Huge 
numbers of electronic components 
integrated onto a single chip. This has 
led to complete computers on a single 
semiconductor device. 

You may be wondering by now where Forth fits into all this. Forth is a 

programming language designed by Charles Moore using an IBM 1130 - a 

third generation computer. Moore was so impressed by the results of his 

work that he considered it constituted a fourth generation language, but 

the 1130 only allowed five character names, so he settled on ‘Forth’. As it 

turned out he could not have chosen a more appropriate name, since the 

language is perfectly suited for use with modern day microprocessors. 

We are now moving towards what has been hailed as the fifth generation 

in computing. This revolves around machines which can perform many 

tasks at the same time (parallel processors) and attempts to make com¬ 

puters behave more like human beings (as in Artificial Intelligence - see 

section 2.3). It has been claimed that these developments spell doom for 

traditional programming languages, allowing people to communicate with 

computers using normal everyday conversation. Whether or not this will 

be the case remains to be seen, but there will always be a need for tools to 

develop these complex programs and languages - building the interface 

between the mechanics of the computer and the workings of the human 

mind. 

1.2 Species of computer 

The first commercially used computers were monsters called mainframes. 

These generally have hundreds of users at terminals from which they can 

communicate with a huge central resource. Because these machines were 

concerned mainly with the processing of large volumes of information the 

part of a company responsible for them became known as the data process- 
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ing or DP department. Clearly such installations required a very large DP 

department, and sometimes this even led to the formation of a new 

subsidiary company just to perform this function. 

As demands on computers became more sophisticated the traditional 

mainframe setup began to prove itself less than satisfactory. Integrating 

the activities of large numbers of users and programmmers can be very 

complex. General purpose programs designed to fulfil a number of 

requirements often end up inadequate for any of them. Despite the 

immense power of mainframes, peak time demands from users can still 

cause bottlenecks resulting in an unacceptable delay in the computer’s 

‘response time’. Apart from all this the cost of such a computer is well 

beyond the range of all but the mega-corporations. 

The next stage of computer development brought with it smaller, more 

manageable computers dubbed ‘minis’. These might have between one 

and fifty users, thus catering for the needs of smaller businesses. Large 

companies often install minicomputers in each of their subsidiaries, link¬ 

ing them together in what is called a network. This kind of arrangement is 

known as distributed processing. Although the operation of minicom¬ 

puters tends to follow the pattern of mainframes, the smaller DP depart¬ 

ments are able to concentrate on the specific requirements of particular 

users. Another bonus is that if the machine breaks down far fewer people 

are affected! 

Although some of the minicomputers available are quite small, their 

installation still requires a considerable investment, both in terms of 

equipment and staff (not to mention training and consultancy). Com¬ 

puting therefore remained the exclusive right of business, government and 

universities until the advent of microprocessors in the mid-seventies. 

Microprocessor technology brought with it small, cheap machines 

called microcomputers, which have since found their way into millions of 

homes throughout the world. It is this type of computer with which this 

book is concerned. At the time of writing the microcomputer industry is 

still having growing pains. Early home computers used cassettes to load in 

programs. This meant that the computer was unable conveniently to store 

and retrieve volumes of information, which has traditionally been the 

machine’s main function! In fact the only kinds of program which can be 

run effectively without access to stores of information are games and 

simulations, w7hich explains the proliferation of such applications. 

Now that home users have begun to demand more than just games, 

cassette storage is being replaced by a more widespread use of disk drives, 

allowing much faster access to information. Although this demands a 

rather higher initial investment, it opens the doors to a flood of new 

software covering a bewildering variety of subjects. It is also good news for 

Forth - which is completely unworkable using cassette storage. 

Microcomputers themselves come in a variety of different forms, rang- 
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ing from small hand-held devices to powerful multi-user systems. Home 

computers tend to fall somewhere between these extremes, but may offer 

quite sophisticated facilities. They can generally talk to one another 

through networks or be used to control external equipment like robots. 

Through Forth the full potential of these exciting machines can be 

realized. 

1.3 The main elements of a computer 

The main function of a computer is to allow us to store and retrieve large 

volumes of information {data) with ease and to manipulate them at high 

speed. In order for this to be possible the computer must have a number of 

attributes; eyes or ears to allow it to receive the data we send, a memory 

(possibly both long term and short term), a brain with which to process 

the data, and a voice to tell us the answers. Diagram 1.1 shows the main 

elements of a computer, the arrows indicating the directions in which 

information or data is allowed to travel. 

Input device 

Output devices 

Diagram 1.1. Main elements of a computer 

Communication between man and machine takes place through the 

input and output devices collectively known as peripherals. The diagram 

shows a system using three peripherals; a keyboard for input and two 

output devices, a display unit (or VDU) and a printer. This is a common 

enough set-up on small systems, but in practice the processor may be able 

to communicate with many peripherals of both types. The memory (where 

data is stored) is shown in two parts. The fixed storage is the computer’s 

own internal memory, known as ‘core’ on large mainframe computers - a 
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term rarely applied to smaller machines. The removable storage allows the 

computer’s long term memory to be expanded. It usually consists of disk 

and/or tape drives through which data may be electronically recorded onto 

a magnetic surface, and read back at some later point by the CPU. These 

drives are known as mass storage devices and are peripherals capable of 

both input and output. By the addition of multiple mass storage devices, a 

computer’s immediate memory can be expanded to enormous capacity. 

They also give the computer the capacity for an almost limitless archival 

memory, since libraries of tapes and disks may be built up and used in the 

drive as and when required. 

The central processing unit or CPU is the computer’s ‘brain’. Its thought 

processes are governed by the programs that drive it. Through these 

programs the CPU monitors its input devices for data, transmits data to its 

output devices and manages all communication with memory. It also 

performs any arithmetic necessary. The CPU carries out these tasks at 

enormous speed so it can sometimes create the illusion of doing many 

things at the same time, which is not in fact the case. On very large 

computers the CPU may consist of racks of printed ciruit boards packed 

with electronic components, whereas on a home computer it is normally a 

single electronic component called a microprocessor. The principles of 

operation are, however, much the same. 

The computational pow'er of a processor is often gauged in terms of the 

data width. This is the maximum size for one piece of data which can be 

manipulated in one go. The width of data is measured in bits and a bit 

number is assigned to the processor to indicate its data width. Generally, 

the higher the bit number of the processor the greater its computational 

power. Microcomputer systems commonly use either 8-bit or 16-bit pro¬ 

cessors. 

1.4 Communicating with the machine 

The computer is an electronic device which communicates by sending and 

receiving electrical pulses down wires. 

Electrical pulses may be used to encode and transmit information over 

distances. The early telegraph systems used this technique, employing a 

circuit breaker to transmit messages in the form of mixed long and short 

pulses called Morse code. In fact computer communications owe a great 

deal to telegraphy. Thus when we type the letter ‘A’ at a computer 

keyboard it sends electrical pulses to the CPU representing the code for 

that letter. When the computer wants to display an ‘A’ the appropriate 

code is sent to the screen which then lights up the correct dot pattern. 

Internally the computer collects these pulses - storing and manipulating 

them as electronic numbers. A number which is eight bits wide has space 

to record a total of eight pulses, and can be stored in a quantity of memory 
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called a byte. Bytes are discussed in the next section, but it is worth noting 

that eight bits are all that is required for each of the typographic characters 

to have its own unique code. 

As mentioned in the previous section a computer may be connected to a 

number of peripheral devices capable of input, output or both. Those 

mentioned so far are the keyboard, disk drive, printer and VDU, but there 

is in fact an infinite variety of possibilities. Examples of other input 

devices include bar code readers (used in supermarkets and warehouses to 

transmit product information to a computer for stock control), light-pens 

and digitizer pads for transmitting pictorial information in computer 

graphics; circuit breakers in alarm systems; and traffic censors for a 

computer controlled traffic light. Output devices include the traffic lights 

themselves; plotters for drawing; sound synthesizers for musical appli¬ 

cations; and machine tools such as lathes in precision engineering. In fact 

today almost any piece of electro-mechanical equipment can be connected 

in some way as a peripheral to a computer. Many of these contain proces¬ 

sors of their own so that the central processor is monitoring and control¬ 

ling a whole cluster of ‘slave’ processors each of which is performing a 

different task. In this way extremely powerful systems may be built up - 

providing the necessary programs can be written to drive them. 

1.5 The memory 

The memory is an essential part of the computer, without which the 

processor would be extremely iimited in its usefulness. Memory was 

briefly described in section 1.3 in terms of its fixed and removable com¬ 

ponents, and its actual operation is discussed in the context of Forth 

programming in Chapter 4. It is, however, worth taxing a slightly more 

detailed look at some of its general characteristics before proceeding with 

the rest of this book in order to clarify some of the terms used. 

A processor has access to two types of memory in which it may store 

data for later retrieval. Several small memory elements are part of the 

processor itself. These are called the processor’s registers and are typically 

8 bits wide on an 8-bit processor and 16 bits wide on a 16-bit processor. 

They are used as temporary storage for data while the processor is carrying 

out computations. In addition to the registers the processor has access to a 

much larger quantity of external memory. This forms the bulk of the fixed 

memory in diagram 1.1. In order to be able to express exactly how much 

memory is available to the processor, a standard unit of memory — the byte 

- is used. To give an idea of how much memory a byte is, each character 

typed in at a word processor keyboard and stored in the memory occupies 

one byte. A page of typewritten A4, therefore, might occupy 1500-2000 

bytes. 
In order to appreciate better how all this business of bits, bytes and 

electrical pulses fits together consider the ‘pinball memory’ element shown 
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in diagram 1.2. The memory element consists of a row of eight pinball 

firing chambers, each of which is loaded with a ball. After the ball in the 

left-most chamber has been fired it passes over the flip up barrier, and up 

the ball channel containing the trigger. When the ball passes over the 

trigger the barrier flips up leaving a record that the ball has passed that 

way. Thus if someone else has been playing and we come into the room we 

can tell by a glance at the barriers which balls have been fired. The barriers 

have ‘remembered’ it. Each of the flip-up barriers and its trigger mechan¬ 

isms is equivalent to one bit of memory, and the whole unit is equivalent 

to one byte. A single bit can record events on one ‘channel’. It tells us one 

of two things, either something happened (a ball passed over the trigger) 

or nothing happened (no bail passed). All eight channels can be monitored 

simultaneously so that if we fire a pattern of balls it will be reflected in the 

state of the barriers afterwards - a barrier being ‘high’ if a ball passed and 

‘low’ if none passed. 

triggers 

/ \ 

o 

f t t t t t 
Ball firing mechanisms 

Diagram 1.2. Pinball memory 
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The electronic memory of a computer operates in a similar manner, the 

events recorded are electrical signals travelling along wires, one wire for 

each bit in the cell. If an event occurs the bit stores up an electric charge, if 

none occurs it does not. The bits are said to be in a high or low state 

according to whether anything has happened to them. There are a 256 

possible bit patterns in a single byte of memory. This allows a byte to be 

used as an electronic number in the range 0 (all bits low) to 255 (all bits 

high), and explains how it is possible to encode all the typographic 

characters including punctuation using only 8 bits. 

If a byte holds just one letter of the alphabet then clearly a very large 

number of bytes would be needed to remember even one chapter of this 

book. Generally when discussing how much memory is available on a 

computer system the units Kilobyte and Megabyte are used. A Kilobyte, 

or IK , is approximately 1,000 bytes, a megabyte about a million. Why 

these are approximate is explained in Chapter 7. Thus a computer system 

with 16 Kilobytes of internal memory is referred to as a 16K machine. A 

typical home computer might have say 48K or 64K, a large minicomputer 

perhaps 2 or 3 Megabytes. 

The memory discussed above is called ‘read/write’ memory since it can 

be altered by the processor as well as read back. This is commonly called 

RAM (random access memory). We have seen how this operates by 

storing up electric charge, but what happens to this charge when the 

computer is turned off? In short it disappears, and the computer ‘forgets’ 

everything. It so happens that the programs which drive the computer are 

held in memory and in forgetting these the computer reverts to a useless 

pile of electronics. On mainframe computers the power is never turned 

off, and great precautions are taken to ensure that the power can never go 

down accidentally. On smaller machines however this approach is com¬ 

pletely impractical due to the expense. To get round this problem pro¬ 

grams and data essential to the basic operation of the computer are stored 

on a different kind of memory, which is able to retain its information after 

the power has been disconnected. In this type of storage the data is 

actually a permanent part of the circuitry and can never be altered. For 

this reason it is known as ‘read only memory’ or ROM. Part of the fixed 

storage of a computer is always ROM, so when we talk of a 48K machine it 

should be made clear whether this is total storage or RAM since only the 

RAM is available for the user’s data and programs. 

Frequently a computer application will require that information be 

stored over a long period of time, or require more information than can be 

held in the computer’s internal memory. To accommodate this the data in 

RAM must be moved somewhere else before the power is turned off. In 

these cases mass storage devices are used as a long term read/write mem¬ 

ory, data being transferred to and from RAM by the processor as needed. 
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1.6 What can you use computers for? 

To begin with computers were used to process and store large amounts of 

numeric information, perhaps representing financial transactions or legal 

contracts. Commercial computing has thus tended to use the technology to 

replace existing manual systems. A filing cabinet and attendant clerk 

might be replaced by a small database for instance. Although the wide¬ 

spread use of computers in business has transformed office life, their mode 

of operation is still based on traditional administrative systems, it is only 

the quantity and type of support personnel required that has changed. 

Microprocessors, providing cheap computing power in a convenient 

package, are transforming the nature of applications. Remember that they 

need not necessarily be attached to screens or printers to communicate 

with humans - they can for instance be used to control a robotic arm or a 

space satellite. Although more traditional applications like spreadsheets 

and word processors are still very popular amongst microcomputer users, 

more specialist packages are emerging covering subjects from gardening to 

graphic design, not to mention the vast number of games. It is reasonable 

to assume that in ten years’ time the variety of software available will equal 

that of books, and that as a result microcomputers will be as widespread as 

televisions. 
Because of the immense potential for microprocessor applications pro¬ 

gramming has been transformed from a challenging but essentially mono¬ 

tonous and repetitive task into a highly creative and rewarding pursuit. 

This has made it appealing just as a hobby even when the programmer has 

no particular application in mind. Whatever your reason might be for 

wanting to learn programming, the choice of Forth as a language is one 

you will never regret. 
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2.1 What is a computer program ? 

Although the machine described in Chapter 1 has the potential to operate 

as a computer, in order for it to do so it must be told exactly what actions 

to perform. A computer program is a sequence of such actions and when 

the computer is performing them it is said to be ‘executing’ the program. 

In practice all computer systems are executing some program all the while 

the power is connected. The computer equipment required to execute the 

programs is collectively referred to as hardware, whilst the programs 

which make the hardware useful are called software. 

The part of the computer responsible for executing programs is the 

processor, often called the central processing unit or CPU. It has an innate 

ability to carry out a limited number of operations, which may be com¬ 

bined into sequences to build up more complex functions. The memory of 

a computer can be viewed as an array of discrete elements which may be 

accessed individually by the processor. Each element is assigned a number 

for purposes of identification, and this is called a memory address or 

simply address. Memory is said to start at address zero. The programs that 

a computer executes consist of lists of numbers held in memory in con¬ 

secutive addresses. These numbers represent codes instructing the proces¬ 

sor to carry out particular actions. There are a limited number of instruc¬ 

tions available for any particular processor, collectively known as the 

processor’s instruction set. The processor begins executing instructions at 

the start of memory and continues working towards the end of memory. 

The action of finding the next instruction and executing it is called the 

instruction cycle, and the efficiency of this process largely determines the 

overall speed of execution of the programs. In order to keep track of where 

in memory the next instruction is to be found the processor maintains a 

counter in an element of internal memory, called the program counter, 

which is adjusted at each execution of the instruction cycle. Don’t worry if 

all this sounds confusing - it is not necessary to understand the internal 

workings of the processor to begin writing computer programs! 

A computer program in the form just described is called a machine code 

program, since it has been coded into a language which the processor can 

understand. All programs executed directly by the processor are machine 
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code programs. In order to produce machine code programs for the 

processor to execute - without the need to think exclusively in terms of 

numbers - computer languages are used. These are programs which 

translate more-or-less day-to-day language instructions from the pro¬ 

grammer into the appropriate code for the processor. The use of computer 

languages is the main topic of this chapter and is discussed in detail in the 

following sections. 

In order to be even remotely usable a computer must have a portion of 

its memory permanently loaded with a set of machine code programs 

which enable communication with the human users, providing the ability 

to read keystrokes from a keyboard and display things on the screen for 

instance. These programs are collectively called the system software or 

operating system. In order to be permanent they must be programmed into 

special memory devices called Read Only Memory (ROM). When data is 

programmed into ROM it effectively becomes part of the electronic cir¬ 

cuitry and cannot afterwards be altered or removed. It remains there even 

when the computer is turned off. Since these programs are permanently 

assembled into the machine as part of a hardware device, the term firmware 

has been used to distinguish them from non-permanent pieces of software. 

In addition to ROM, the computer has a certain amount of read/write 

memory known as RAM (for Random Access Memory) which can be 

altered by the processor during program execution. This type of memory 

is called ‘volatile memory’ - since all information it contains is lost when 

the power is turned off. The system’s RAM may be used to hold programs 

for the processor to execute. These must be loaded into the memory either 

from the keyboard or more usually from a mass storage device such as a 

disk drive or tape machine. The use of such a device allows much larger 

programs to be placed in memory without using expensive ROM and also 

allows the same genera! purpose piece of hardware to be used for a wide 

variety of specific applications. 

Very often on a disk based system the major part of the system software 

is held on disk, while firmware contains only those programs required to 

establish communication between the processor and all the equipment 

connected to it. When power to the machine is turned on the firmware 

simply sets up the communications and starts loading up the RAM from 

disk. Once this is done the processor executes one of the programs in 

RAM. The firmware which gets a computer started in this way is called a 

bootstrap program. 

Typically, system software loaded from disk contains a number of 

general utility programs which may be invoked by the user typing in a 

command at the keyboard. These programs allow the user to deal more 

easily with the routine tasks of computing such as disk copying, loading 

and running programs etc. It is also possible that the user wishes to write 

programs, in which case a further set of utility programs must be 
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employed, which are dedicated to the task of generating the necessary 

machine code. 

2.2 Levels of programming 

The various programs described in the previous section clearly all have to 

be written at some point. This means that someone has to decide what the 

program should do, find an appropriate sequence of processor instructions 

to achieve that end, and finally get the appropriate codes into the correct 

place in memory. The initial specification of the program in the pro¬ 

grammer’s native tongue may have consisted of very few statements. The 

processor, however, only performs very simple functions such as adding 

two numbers together. It may therefore take a very large number of 

processor instructions to perform even a trivial task. The relationship 

between a program’s specification and the actual computer activity is a 

question of levels. The task is first specified by a few ‘high level’ state¬ 

ments each of which will correspond to a large number of ‘low level’ 

processor instructions. Writing the program may be thought of as a 

process of successive translations from native language down to processor 

instruction codes. Over the years a large number of programming lan¬ 

guages and utilities have become available to provide short cuts in this 

translation process. 

The first level of compromise between man and machine came with the 

provision of assembly languages. An assembly language program consists of 

a sequence of statements in text form, which are to be translated into 

machine code. The text itself is referred to as the source code, and may 

reside on disk, in RAM, or simply hand written on paper. The statements 

consist of short mnemonics designed to reflect in some way the operation 

which the processor will perform. There is one mnemonic for each of the 

processor’s instructions. These will be mixed with other statements and 

numbers which refer to the data on which the instructions are to operate. 

The process of translating the source code into a machine code program is 

program assembly and the result is called an object code program. 

The task of assembly may be performed manually simply by looking up 

the appropriate codes in a reference book, but that still leaves the task of 

loading the object code into RAM. More usually an assembler program is 

used to produce the object code automatically. To load an object code 

program into RAM a further program called a loader is used. The initial 

assembly language source code is normally produced using a text editing 

program and saved onto disk. This is then assembled and the object code 

loaded into the correct place in RAM. Any good assembler should perform 

all these tasks and a good few more with relative ease. 

Assembly language is known as a low level language because it deals 

directly with machine instructions. Each different type of processor has its 
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own specific assembly language, so that source code written for one cannot 

be used to generate object code for another without employing a specially 

designed ‘cross-assembler’. Another disadvantage of programming in 

assembly language is that because large numbers of machine instructions 

may be required to perform a task, the source code tends to be very 

long-winded. Furthermore since the whole program is described in terms 

of machine instructions, rather than in terms of the particular application, 

it is easy to lose sight of what a program was supposed to be doing w hen it 

comes to fixing the inevitable faults. This difficulty can be overcome to 

some extent by extensive annotation of the program, but this produces 

even bulkier source code for the programmer to plough through when 

tracing faults. The use of assemblers has, however, allowed other higher 

level languages to be written in order to achieve a more concise notation. 

Programming in a high level language allows program statements to 

specify more complex operations of a computer application in a readable 

language, without direct reference to the actual machine instructions that 

will eventually be performed. The translation of the high level source code 

into object code is done using a compiler. The high level language state¬ 

ments do not relate directly to particular machine operations, but each will 

be translated into a sequence of many instructions. This leads to far fewer 

statements in the source code and enables more complex programs to be 

written and tested. The high level language may then be used to w'rite 

other even higher level languages and program generators, so that ever 

more complex tasks may be specified to the computer in a reasonably 

concise form. 

2.3 Languages 

We have seen that different languages are used at various levels of pro¬ 

gramming. This is not the only reason for differences between pro¬ 

gramming languages. As computers have developed a vast selection of 

languages has come into existence. At the low'est level this is because each 

new processor understands a unique set of instructions, but languages 

have also been developed to handle certain sorts of application or be 

geared towards particular kinds of computer equipment. 

The best example of a computer language designed for use in a specific 

application area is COBOL, which stands for COmmon Business Orientated 

Language. As you might expect this is used almost entirely for commercial 

applications. The sort of functions which Cobol provides are particularly 

suitable for the storage, retrieval and simple processing of large volumes of 

information. 

Languages such as COBOL are perfect for large sophisticated computer 

installations, where programmers are protected from the actual operation 

of the computer so that they can concentrate on churning out volumes of 
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code. As far as microcomputers are concerned, however, they have two 

significant disadvantages. One is that they tend to use a fair bit of memory 

- a resource that is still relatively limited on most micros (though this may 

soon change!) More importantly, they give very little direct control over 

the machine, tending to impose their own features onto applications. Since 

a microcomputer is generally entirely under the control of a single user, a 

programmer should expect total control over all its facilities. 

Another way in which programming languages are seen to differ is the 

ease with which they can be learnt and used. BASIC, for instance, was 

specifically designed for use by a beginner with little or no knowledge of 

computers. In this case the general approach is to present the potential 

programmer with a small set of simple functions. Each program then 

consists of a list of numbered lines containing these functions. 

Whether or not BASIC is easy to learn is a matter of opinion, but one 

thing is sure - it is very difficult to use. An analogy with natural human 

language explains why this should be the case. If, for intance, Russian 

consisted of only one hundred words, it would be very easy to learn all of 

them by heart. The problem would come when we actually wanted to say 

something - being restricted to such a small vocabulary! Another difficulty 

with BASIC is that in general only one program can reside in the machine at 

a time. This means that for any non-trivial program the list of instructions 

becomes very long, and eventually completely unmanageable. The result 

of all this is that even though BASIC is provided on nearly all home 

computers it is rarely used for professional software development. Where 

it is used much of the work may be done by machine code routines, with 

BASIC providing just the outer level calling sequence (the next section of 

this chapter looks at this in more detail). 

One feature of a language which is considered particularly important by 

software developers is its portability. This simply means how easily it can 

be made to run on many different types of computer. The degree of 

portability of a programming language depends upon the number of 

machines on which it has been implemented, and on the number of 

different ‘dialects’ (i.e. variations) of the language w'hich exist. BASIC, for 

instance, is used on a vast range of machines, but its overall portability is 

limited because of the many different dialects used. 

Typically the choice of language to be used in a large computer installa¬ 

tion or software house depends almost entirely on the availability of 

qualified programmers. For this reason the well established institu¬ 

tionalized languages, having already attracted considerable investment as 

far as training is concerned, tend to be self perpetuating. This highlights 

the fact that traditional high level languages often bear little relationship to 

the way the computer itself operates. Expert COBOL or BASIC programmers 

may have little or no knowledge of computers per se, and their skills might 

consequently be restricted in their application. 
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For the home user the choice of languages presents quite different 

problems. On the one hand the language needs to be relatively easy to 

learn, but it must also allow the programmer to achieve serious results 

without spending months on development. It also helps if it encourages a 

general awareness of the way the computer actually works. 

Many of those who have rushed out over the past few years to furnish 

thmselves with mirocomputers have assumed that BASIC was the only way 

to program these beasts. The result has undoubtedly been many frus¬ 

trating hours spent poring over huge ungainly program listings, followed 

by the eventual acceptance of failure - normally interpreted as personal 

incompetence rather than a failing of the language itself. In the next 

chapter we shall see why Forth offers an attractive and accessible alterna¬ 

tive to this situation. 

One other area of software which we should mention in this section is 

termed Artificial Intelligence (AI). Many different definitions have been 

given to this phrase. In general it involves making computers appear to 

behave like human beings. This means that they must exhibit qualities 

normally associated with thinking or intelligence. Some have described 

this field as a sort of meta-computing, suggesting that it covers those 

functions computers cannot at present perform, such that once a problem 

posed by artificial intelligence has been solved it becomes a part of com¬ 

puter science. 

Artifical intelligence is a synthesis of computer science and psychology 

which is still at a very primitive stage. Like any other area of computing, 

however, its adherents have a pet language which they consider par¬ 

ticularly suitable for the problem at hand, in this case Lisp. Lisp is based 

on a type of programming called list processing, which is literally the 

manipulation of lists of words and numbers. Similar facilities are offered 

by the language Logo, which is particularly suitable for children and 

beginners. 

One of the facets of artificial intelligence which is being increasingly 

applied to microcomputer applications is natural language processing, 

allowing the user to converse with the computer in normal conversation. 

Note that list processing is appropriate here since sentences are literally 

lists of words. Many of the more sophisticated AI techniques, however, 

make heavy demands on computer resources, and so are still impractical as 

far as contemporary microcomputers are concerned. 

2.4 Compilers and interpreters 

In terms of operation there are two broad categories of high level language. 

Those which are compiled and those which are interpreted. A compiled 

language is one which uses source code to produce machine object code, 

which is later executed directly by the processor. An interpreted language 
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does not produce object code, but translates statements in the source 

directly and executes built in functions to achieve the desired effect. The 

interpreter does this translation while the applications program is running, 

and thus necessarily executes more slowly than the equivalent compiled 

program. Most small microcomputer systems come with a built in lan¬ 

guage interpreter, normally some dialect of BASIC. The reason that inter¬ 

preters rather than compilers are used is that they are much easier to 

develop and are consequently less expensive. 

A compiled program consists of actual machine code to be executed 

directly by the processor without the need of further assistance from the 

compiler, hence it does not carry the same speed penalty as an interpreted 

language. The translation is said to take place at compile-time (while the 

program is compiling) rather than at run-time (while the program is execu¬ 

ting). The object code produced, however, is normally less efficient than 

that produced by an assembly language program, and at times this may- 

become critical. To accommodate this situation most compilers allow for 

the incorporation of assembly language subroutines into the object code of 

the high level program. A subroutine is a small general purpose piece of 

code which may be executed repeatedly by one program, or used by many 

different programs. The inclusion of assembler subroutines is frequently 

achieved by writing them separately using the assembler and then incor¬ 

porating them into the high level program by means of a utility program 

called a linker. The linker may be either a separate program or an integral 

part of the compiler. It is normally invoked by the inclusion of statements 

in the high level source code known as compiler directives. These state¬ 

ments are not compiled into object code but direct the compiler program 

to perform some task at compile time, such as invoking the linker. 

In addition to the use of linkers, some kind of subroutine library facility 

is useful in a compiler. This allows the programmer to accumulate named 

subroutines in an organized fashion so that they may be accessed directly 

by the compiler. They may be either assembly language or high level, and 

the facility should allow the routines to be linked in to any new source 

program. This allows later source code to be much more concise since only 

the name of the routine need be included with a compiler directive rather 

than all the program statements of the routine. The use of this type of 

facility can greatly speed the development of applications programs, 

especially as more comprehensive programming resources are 

accumulated. 

If you have found all this a little confusing - don’t panic. Because Forth 

is literally just a library of subroutines special libraries are unnecessary. 

Similarly since Forth and assembly language programs can be mixed quite 

freely there is no need to worry about linkers or separate assemblers. As 

we shall explain in the next chapter these are just some of the ways Forth 

integrates and simplifies the various elements of a microcomputer system. 
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2.5 Application design 

In traditional computing the development of applications has been given 

two distinct phases, with different skills (and hence personnel) required 

for each one. The first phase is the analysis of a real life problem (such as a 

company’s stock control procedures) to decide where and how the com¬ 

puter fits in. The problem is described with reference to the computer’s 

prospective role. This description is then used by the programmer to 

produce actual code. This job of systems analysis is, in fact, generally 

considered more prestigious than programming itself. 

Smaller computer installations have blurred the distinction between 

systems analysis and programming, so that both functions may be per¬ 

formed by a single individual, called a programmer-analyst. Nevertheless 

a great deal of attention is paid to the design stage of an application. 

Because the home computer industry has tended to present pro¬ 

gramming as an isolated activity many amateur programmers give far too 

little thought to the pre-programming phase of application development. 

It is essential that the specific aims and requirements of an application be 

analysed into a general plan of action before coding itself begins. It is 

worth giving some thought at this point as to what form such a task might 

take, since it must precede even the most elementary programming. 

A microprocessor performs a long series of very simple tasks extremely 

quickly. This gives the illusion of it performing quite complex tasks at a 

satisfactory speed. The actual performance depends upon the processor 

itself, the programming language used, and the complexity of the task. 

The main point is that in order to describe a complex task to a computer it 

must invariably be split into a sequence of much simpler functions. 

We shall see later how Forth encourages this process. You should 

always be aware, however, of the importance of good application design. 

Never begin actually to code a program until you are sure you have a clear 

idea of exactly what you want the computer to do. To illustrate how this 

might work diagram 2.1 shows how the simple task of making instant 

coffee might be analysed, using a device known as a flowchart. 
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Diagram 2.1. Flowchart to make instant coffee 



About programming 29 

A technique commonly used by Forth programmers at the design stage 

attempts to present the main elements of a task in a form known as 

pseudo-code. This is sort of cross between English and Forth program 

code. The pseudo-code for our coffee making task might look like this: 

HAVE-INGREDIENTS? NOT IF BUY-INGREDIENTS THEN 

WATER-IN-KETTLE? NOT IF FILL-KETTLE THEN 

TURN-KETTLE-ON 

BEGIN BOILED? UNTIL 

COF FEE>CUP 

WATER>CUP 

MILK? IF ADD-MILK THEN 

SUGAR? IF ADD-SUGAR THEN 

STIR-COFFEE 

DRINK-COFFEE 

As you will see, one of the beauties of Forth is that the final program of an 

application looks almost exactly like the pseudo code shown above. If you 

can make any sense of this list of instructions you are already well on the 

way to being a Forth programmer 

2.6 Testing and debugging 

‘Bug’ is a word so commonly used by computer programmers that it is 

rapidly becoming a part of everyday conversation. It refers to a pro¬ 

gramming error which has caused some unexpected (and usually undesir¬ 

able) result. A simple fact, that you may as well come to terms with right 

now, is that hardly any programs work perfectly the first time. Even the 

most skilful programmers spend a very significant proportion of their time 

testing and ‘debugging’ their programs. 

Bugs do, of course, vary in their seriousness. Sometimes they cause the 

machine to cease functioning altogether. This is known as a system crash 

and can often only be remedied by turning the machine off and on again. 

Because Forth allows the programmer total control over the computer it is 

easy for a beginner to cause a crash of this kind. Do not be put off, the 

seriousness of the condition caused by a programming error in no way 

relates to the gravity of the error itself. 

Because it is very hard to imagine beforehand exactly how an appli¬ 

cation might look, programs always need unforeseen modifications during 

final testing. This may be to correct bugs, for performance tuning or just 

for cosmetic reasons. 

If it is vital that an application is bug-free before it is used it will often be 

subjected to a process knowm as ‘destructive testing’. As you might 

imagine this means trying every possible way to cause an error. It makes 
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the (generally correct) assumption that if the program is to be used by a 

large number of people then eventually everything that possibly can go 

wrong will do so! Unfortunately even the most rigorous testing will often 

overlook that million-to-one chance condition, leaving an obscure bug 

lurking somewhere in the code. For this reason one of the cardinal rules of 

programming is to make all programs as simple as possible - debugging a 

complex program a year after it was written can be a daunting task! 

Even if you are writing programs solely for your own use considerable 

effort needs to be put into initial testing, though some bugs can be 

corrected as and when they start causing problems. Diagram 2.2 shows a 

complete program development cycle. Note that the actual act of coding is 

only one element of the cycle. 
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Diagram 2.2. Program development cycle 



3 About Forth 

3.1 How is Forth different? 

Forth differs from other microcomputer languages in that it offers a 
complete integrated development environment. A good Forth is at once a 
compiler, interpreter, operating system, low level language and high level 
language, leading to immense flexibility. It is fast, with execution speeds 
up to ten times faster than basic, yet the programs can take up less 
memory than machine code! The complete control over the machine 
which it offers means that no application is beyond its capabilities. 

Like more traditional languages Forth begins life as a selection of 
named functions. These are known as words, and the original set of them is 
called the ‘nucleus’ or ‘kernel’. Using a language like basic generally 
means that only one program can be resident in memory at a time, and 
that each program must be defined entirely in terms of the reserved words 
supplied. This results in long program listings which can be impossible to 
follow, and whose overall structure is often chaotic. Not so Forth ! The 
essence of Forth is short highly structured programs. By structured we 
mean here that the organization of the source code is closely related to the 
actual task it represents - though as you will see the term has a much 
greater significance with respect to programming itself. 

Forth allows a virtually unlimited number of programs to co-exist on 
the machine. Each of these programs becomes a part of the language just 
like the words in the nucleus, and can itself be used in other programs. 
Forth programming is thus a process of successively increasing the power 
of the language until a complex task can be defined in terms of a small 
number of powerful functions. By carefully choosing program names so 
that they reflect their function high level Forth programs can be made to 
look almost like English (or any other language come to that!). We will be 
looking more closely at how this works in section 3.3. 

Earlier we said that Forth was a compiler and an interpreter. This 
means that as well as being used within other programs, each Forth word 
can also be used interactively from the keyboard. The elements of any 
program can thus be run one by one, and problems quickly isolated. 
Testing, editing and recompiling programs is remarkably quick and easy 
on a good Forth system, since extensive applications containing many 
different programs can be compiled in only a few minutes. 
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Although Forth is very fast it still runs considerably slower than the 

equivalent machine code. This is no problem, since, if necessary, routines 

can be defined using an assembler exactly as if they were Forth words, and 

subsequently they can be used freely in programs. In practice, however, 

this is only done occasionally with extremely time-critical routines and will 

not be discussed in any depth in this book. 

As well as being flexible and extensible, Forth is above all accessible. 

This means that every aspect of the language is open to change by the 

programmer. A good Forth system can be reconfigured to create com¬ 

pletely new programming environments. Although it does not provide any 

high level application-specific functions, with careful planning any pro¬ 

grammer can develop a powerful set of his or her own, regardless of the 

specific nature of their requirements. All this combines to make Forth the 

ideal development tool for any microcomputer application. 

3.2 Drawbacks and limitations 

Having sung Forth’s praises throughout the previous section it seems only 

fair to offer a few words of warning about some of the potential pitfalls. 

You may have noticed that the phrase ‘a good Forth’ has cropped up 

several times already in this chapter. This implies that there is such a thing 

as a bad Forth system, and indeed this is very much the case. Bad Forth 

compilers are very easy to write, and there are a great many of them 

around, especially for the smaller home computers. To be fair some of 

these machines are simply not capable of supporting a very good Forth for 

reasons we will discuss shortly. Too frequently, however, it is simply 

down to a complete lack of appreciation in both the supplier and the 

potential buyer of what a Forth system really should look like. The last 

section of this chapter outlines the essential features you should look for 

when buying a new system. 

The use of cassettes has conspired to give Forth a bad name amongst 

home users because it is quite simply not designed for use with such 

devices. Your system must include at least one disk drive if you are hoping 

to undertake any serious Forth programming. Fortunately the use of 

cassettes as removable storage is now dying out, with a consequent rise in 

the popularity of Forth. Another factor which has adversely affected Forth 

implementations on home machines is the widespread use of the 6502 

processor. For various reasons this processor is particularly inappropriate 

for running Forth, though reasonable implementations do exist. 

The complete control over the machine and lack of error checking 

provided by Forth can be alarming to a beginner. Invariably mistakes are 

made which result in a complete system crash, and to an inexperienced 

user the code responsible can seem impossible to trace. This problem soon 

passes as the possible sources of such errors become more familiar. 
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Some low level Forth words may seem strange at first, having odd 

single-character names. A good example is the word ! - which stores a 

value in memory. These can make source code look completely unreadable 

at first glance. The trick is to learn to pronounce such words by a more 

descriptive name; a Forth programmer will naturally think of the word 

‘store’ upon encountering an exclamation mark. As with any language 

(computer or otherwise) it is the significance or meaning with which a 

word is naturally imbued that counts, not its appearance. Another thing to 

remember is that any Forth function can be redefined or renamed, so that 

if desired a word called store could easily be added with the function of 

1. 
Finally, the approach to program development demanded by Forth is 

dramatically different from that of languages like BASIC. It demands much 

more attention to application design, and a deeper analysis of the problem 

at hand. This means that experienced BASIC programmers might actually 

find Forth more difficult to master than a complete computer novice 

would, since the former will probably attempt to impose inappropriate 

preconceptions. The effort of learning is well worthwhile, however, since 

it opens up a whole new world of programmming freedom. 

3.3 Forth words 

We have already mentioned that Forth is composed of a large selection of 

words, and that programming involves progressively combining these to 

produce new words of increased functional power. To illustrate this let us 

take another look at the coffee making task described in section 2.4. The 

first line of our pseudo-code reads: 

HAVE-INGREDIENTS? NOT IF BUY-INGREDIENTS THEN 

Clearly the various words involved must have some method of communi¬ 

cating with one another, have-ingredients? decides whether or not the 

appropriate ingredients for making coffee are available, and communicates 

the results of that decision to NOT. The decision is reversed by not and 

transmitted to if which only allows buy-ingredients to execute if the 

answer is yes (as in, yes we have no ingredients!). We will be looking at the 

actual way in which Forth words communicate with one another in the 

next section. For the present purposes we shall allow words to communi¬ 

cate the results of decisions only. 

The following is an imaginary set of words which make up the language 

‘Cofforth’. We shall combine these words into further words to produce 

the high level functions in our pseudo-code program. Where a word leaves 

the result of a decision for use by another word its name is followed by 

(—answer). If a word expects to use the result of a decision left by another 

word then its name is followed by (answer—). 



OPEN-CUPBOARD 
Opens the cupboard door. 
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LOOK-INSIDE 
Looks inside the cupboard and Lists the contents. 

AVAILABLE? ( —answer) 
Checks the List of cupboard contents for coffee 

ingredients. 

CLOSE-CUPBOARD 
CLoses cupboard door. 

NOT ( answer-answer) 
Reverses the decision received, ie yes becomes 
no and vice-versa. 

IF ( answei-) 
If the decision received is 'yes' then aL L functions 
between IF and THEN are executed, otherwise they are 

not. 

MAKE-SHOPPING-LIST 
List those items not already avaiLabLe. 

WALK-TO-SHOPS 
Go to LocaL shop. 

BUY-ITEMS 
Purchase the goods on the List. 

GO-HOME 
Return home. 

The function have-ingredients? can now be defined as follows: 

HAVE-INGREDIENTS? : OPEN-CUPBOARD 
LOOK-INSIDE 
AVAILABLE? 
CLOSE-CUPBOARD 

Notice that the decision left by available? is not used by CLOSE- 
CUPBOARD and so it is still present when have-ingredients? ends. Simi¬ 

larly the word buy-ingredients could be defined: 
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BUY-INGREDIENTS : MAKE-SHOPPING-LIST 

WALK-TO-SHOPS 

BUY-ITEMS 

GO-HOME 

We can now give a name to our line of pseudo-code and make the entire 

thing a new word called ASSEMBLE which assembles the ingredients neces¬ 

sary to make the coffee: 

ASSEMBLE : HAVE-INGREDIENTS? NOT 

IF BUY-INGREDIENTS THEN 

We will be looking more closely into how Forth words are actually created 

in Chapter 5. 

3.4 The stack 

In the previous section we saw how Forth words might be combined into 

programs. We decided that in order for this to work the words must have 

some way of communicating with one another. There are several ways in 

which this can be achieved, but by far the most important is the Forth 

stack. A stack is like a pile of numbers, arranged so that any numbers 

added go onto the top of the pile, and only the very topmost number can 

be removed. This arrangement is called ‘last in first out’ (LIFO). The use 

of a stack is by no means confined to Forth, but it is a key concept which 

must be understood before embarking on any Forth programming. 

Whenever a number is used in Forth it is placed on the top of the stack, 

to be subsequently retrieved by the word that uses it. This means that in 

calculations, for instance, the numbers involved must be placed on the 

stack before the relevant operator is executed. Consider the following: 

2 + 3 

Although this is the way we are used to writing arithmetic expressions, if 

you think about the way they are mentally evaluated it becomes apparent 

that no actual addition can be performed until both numbers have been 

read. If you are not convinced try covering up the 3 with a piece of paper 

and see if the remaining expression makes any sense! Because of its use of 

the stack Forth notation, although unfamiliar to begin with, is very close 

to the way we actually deal with numbers, so that instead of the expression 

above we would write: 

2 3 + 

This would have the following effect on the stack: 

2 The number 2 is placed 

on top of the stack. 
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3 The number 3 is placed 
on the top of the stack. 
The number 2 thus becomes 
the second stack item. 

+ Both numbers are taken off 
the stack, added together, 
and the result (5) is placed 
on the stack. 

The notation used in Forth is called ‘reverse Polish’, but it should be 
stressed that this is entirely the result of the use of a stack - not just an 
arbitrary rule of syntax. The key thing to remember is that any numbers 
which a word uses must be on the stack before the word is executed. The 
arithmetic operators +, -, / and * (for multiply) are Forth words just like 
any other and thus each of them expects two items on the stack, which it 
will replace with a result. We will be looking at the stack and Forth 
arithmetic in much greater depth later on. For the moment, here are some 
examples of expressions in standard (‘infix’) notation translated into 

Forth. 

INFIX FORTH 

10 * 4 10 4 * 

5 + 2 + 8 5 2 + 8 + 
or 5 2 8 + + 

10 * (2 + 4) 2 4 + 10 * 
or 10 2 4 + * 

(18 - 2) / 8 18 2 - 8 / 

Taking the last of these the effect on the stack would be: 

18 The number 18 is placed on 
the top of the stack. 

2 The number 2 is placed on 
the top of the stack. The 
number 18 now becomes the 
second stack item. 

— The numbers 2 and 18 are 
taken off the stack, 2 is 
subtracted from 18, and the 
result (16) is placed on the 
top of the stack. 
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8 The number 8 is placed on 

the top of the stack. The 

number 16 left by - becomes 

the second stack item. 

The numbers 16 and 8 are 

taken from the stack, 16 is 

divided by 8, and the result 

(2) is placed on the top of 

the stack. 

3.5 How to choose a system 

There are four main dialects of Forth currently in use. FIG-Forth is based 

on guidelines developed by the Forth Interest Group, whilst Forth-79 and 

Forth-83 were prescribed by the Forth Standards Team. Full glossaries 

covering each of them are included in the appendices. These three stand¬ 

ards are in the public domain, that is there is no copyright on producing 

such a system. Conformity to one of the standards is thus in no sense an 

expression of quality. PolyForth is a propriety product of Forth Inc. in 

California. Their systems are generally of an extremely high quality, 

though well beyond the price range of most home users. In practice many 

Forth systems are a compromise between the various standards, and most 

have their own eccentricities. As long as the system is well documented, 

however, you should have no problem in coming to terms with these. 

As we pointed out in section 3.2, there are a great many poor Forth 

implementations for home computers which can easily persuade an inex¬ 

perienced user that the language itself is unworkable. In addition to this, 

Forth is no fun using cassette storage and at least one disk drive is essential 

if you are really to come to grips with the language. Indeed good disk 

handling is an essential feature of a good Forth system. For this reason you 

should check that the Forth word block is implemented before buying 

any system (see Chapter 10). This word is fundamental to Forth’s disk 

handling. Systems which do not implement it tend to be too bound up 

with the machine’s operating system (or worse, have been designed for 

cassette!), and have often been developed by someone with little experi¬ 

ence of Forth programming. 

A good Forth should include a source editor and a full mnemonic 

assembler. There are no standards as far as editors are concerned, but in 

time most of them can be adapted to suit your requirements. It is usual for 

a Forth system to include a large selection of extensions and utilities as 

source. These serve both as example programs and as general purpose 

routines for use in your own applications. They also demonstrate that the 

system is usable, since it has actually been used to develop programs, 
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which is reassuring! Disk management, debugging aids and printer sup¬ 

port are amongst the most useful extensions you might look for. 

If your computer runs one of the standard operating systems like CP/M 

or MS-DOS you may find that some Forths run under the operating 

system whilst others are ‘native’. Native systems use their own input/ 

output routines and thus do not require that the operating system be 

loaded in order to run Forth. They tend to be rather simpler to use, if only 

because you do not have to come to terms with the operating system as 

well as Forth, and they generally run somewhat faster. Because native 

systems do not use the operating system, however, they may not keep pace 

with changes in hardware. 

As with any other language the quality of documentation is important 

when choosing a system. It should take the form of some introductory and 

general material, a full Forth memory map (see section 4.3) with details of 

all the important locations, and a comprehensive glossary much like the 

one at the end of this book. 

Finally the quality of a Forth system is, of course, bound to be reflected 

in its price. To some extent your requirements will depend upon your 

intended use of Forth. If you are planning to use it for professional 

programming you should try to explain what you want to do in as much 

detail as possible to any potential supplier, since there are likely to be 

extensions available - possibly at extra cost - which will make things easier 

for you. 
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At the keyboard 
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The rest of this book assumes that you are kitted out with a computer 

running some standard version of Forth. References are made to Forth 

’79, Forth ’83, FIG-Forth and PolyForth so that it doesn’t matter which 

implementation you are using so long as it is not unacceptably non¬ 

standard. 

The manual that came with your Forth should include full instructions 

on getting the language up and running, and you must follow these 

carefully. You will need to equip yourself with at least one spare floppy 

disk (assuming you have a disk drive) to keep your work on. 

When you load Forth you will generally be presented with some kind of 

title or menu and the text cursor will appear as a flashing underline or box 

underneath this. It is at the position of the text cursor that all characters 

typed in at the keyboard will appear. Try keying in HELLO and note the 

position of the characters. At this point although the word has appeared on 

the screen it has not yet been sent to the computer itself. To do this you 

must press the key marked <RETURN> or <ENTER>. Remember 

that you will always have to press this key at the end of any text you enter 

before the computer will respond to it. We will use the symbol 

<RETURN> to indicate where this should be used. 

If you typed in: 

HELLO <RETURN> 

Forth will have responded by echoing the word followed by a question 

mark, so the line will now look like this: 

HELLO HELLO? 

This means that Forth does not yet understand the word HELLO. As you 

try the examples in this book you will find yourself making inevitable 

typing errors, which may sometimes result in odd messages. If this hap¬ 

pens you should keep trying until the desired result occurs and Forth 

responds with ‘ok’ which means it has understood your request and acted 

on it. Try keying in: 

PAD <RETURN> 

and you should find that the ‘ok’ appears immediately the return key is 

pressed (don’t worry about what pad means for the moment). Now key in: 

10 < RETURN> 

Forth again responds with ‘ok’, although nothing appears to have hap¬ 

pened. What has in fact happened is that the number 10 has been put on 

the top of the stack. It can be retrieved by typing: 

. <RETURN> 



44 Section 2: At the keyboard 

Whenever a number is keyed in it is always placed on the top of the stack. 
When you key something in, Forth first checks whether it is an executable 
word (i.e. whether it is in the ‘dictionary’). If it is not, then Forth tries to 
convert it to a number. Any string (delimited by a space) that can neither 
be found in the dictionary nor interpreted as a number is echoed on the 
screen with a question mark. 

Forth is an interactive language, which means that all Forth words can 
be tried out simply by keying them in. It is essential to experiment with 
new words as you come across them until you are completely happy with 
the way they work. Only by using Forth can you ever hope to really 
understand it. 

Occasionally if you make a particularly fatal error your machine may 
cease to accept any input from the keyboard, or it may develop other 
chaotic symptoms. This effect is known as a ‘system crash’ and is familiar 
to all Forth programmers. It means that you will have to turn off your 
computer and reload Forth from the beginning. 

Finally bear in mind that this book is designed to complement - not 
replace - the documentation that came with your Forth system. As Forth 
words and concepts are introduced you should find out what the docu¬ 
mentation that comes with your system has to say about them. It may be 
that certain words have not been implemented or behave in a non-standard 
fashion. Until you know otherwise you should assume that words operate 
in the way described in your user manual as opposed to this book. 



4 Mapping your 
memory 

4.1 How memory works 

The previous chapters have discussed computer memory in general terms 

from a number of different angles. The concepts of bytes, bits, and 

addresses have also been introduced with little explanation as to how they 

all fit together. In this chapter the use of memory is examined more closely 

and some simple Forth words are introduced. It is recommended that the 

reader experiment with these words at the keyboard of a Forth system, 

within the restrictions outlined, for only by doing so will any practical 

appreciation of computer use of memory be acquired. Some of this chapter 

may seem confusing to those unfamiliar with computers; don’t worry, it 

will all become clear as you gain experience in Forth programming. 

In Chapter 1 memory was described as consisting of a large number of 

discrete elements called bytes, each being 8 bits wide and capable of 

storing a number in the range 0-255. It was also stated, in Chapter 2, that 

for purposes of identification each byte is assigned a number called an 

address. This warrants some clarification. The relationship between the 

address of a byte and the value it contains (its data) may be thought of as 

being analagous to a bank’s safety deposit box system. Each of the safety- 

deposit boxes in the bank has its own unique number, which must be 

produced if we are to gain access to the box. The box number is equivalent 

to the address, the box to the byte element and the valuables inside to the 

data contained within the byte. This analogy is limited but fairly useful. 

We imagine the memory as being a number of safety deposit boxes 

arranged adjacent to one another. The boxes are not actually numbered 

but we know that the box at one end is number 0 and that therefore the 

one at the opposite end is the last address. If we wish to examine the 

contents of box 10, we must open the door of the box which is 10 along 

from box 0. In practice the computer plays bank manager and all we need 

to do is to specify the box number and whether we wash to make a deposit, 

a withdrawal or merely gloat over the contents for a while. Here are two 

Forth words which allow the contents of any byte of memory to be 

examined from the keyboard. Note that the words enclosed in brackets are 

just comments which represent the effect of the word on the stack. Those 

to the left of the dashes indicate the state of the stack before execution of 

the word and those to the right the state after. 
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c@ ( address—data) 

‘C-fetch’. Takes the address given on the stack and returns the contents of 

that byte. 

. ( data—) 

‘Dot’. Takes the byte data from the stack and displays it on the screen. 

C@ may be used to retrieve the byte contents of any memory location by 
first specifying the address number and then typing c@. The desired 
address may be placed on the stack ready for c@ to find simply by typing it 
in at the keyboard before keying in c@, e.g. typing: 

100 C@ . <RETURN> 

will display the contents of address 100. Ensure that a space is left between 
each of the words typed, since the Forth interpreter needs spaces to tell 
where one word stops and another begins. 

The number displayed by c@ . will always lie in the range 0-255, since 
as we have said there are only 256 possible high/low bit patterns using byte 
width memory. Clearly it would be extremely limiting if we were always 
confined to this range, but before we look at how larger numbers may be 
accommodated let us take a closer look at how the numbers are construc¬ 

ted from bit patterns. 
One of the simplest and most common computations is counting. A 

computer may use a byte of memory as a digital counter just like a mileage 
counter in an automobile. Each of the bits in the byte operates as a digit in 
the counter but instead of the usual values 0-9 each may only have one of 
two values: 0 or 1. A 1 corresponds to a high state of the bit, a 0 to low. 
The changes in bit pattern for an incrementing byte counter are shown 

opposite. 
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Bit pattern Count value 

00000000 0 
00000001 1 
00000010 2 
00000011 3 
00000100 4 

11111000 248 
11111001 249 
11111010 250 
11111011 251 
11111100 252 
11111101 253 
11111110 254 
11111111 255 
00000000 0 

When referring to the individual bits in a byte it is conventional to use a 

numbering system; the bit shown leftmost is bit 7 and the rightmost bit 0. 

As with the digital counters we encounter in daily life the leftmost digit is 

the most significant and the rightmost the least significant. A number 

whose digits may only have two values is called a binary number, and the 

word ‘bit’ is an abbreviation for the phrase ‘binary digit’. The counter 

shown above is a binary counter which starts at zero and is successively 

incremented. Counting continues until all the bits are set to 1, and on the 

next count it goes round the clock and the entire byte is reset to zeros. 

In order to use memory for counting numbers higher than 255 it is 

necessary to employ more bits to represent the number. This may be done 

by using two consecutive byte addresses as a single ‘cell’ of memory, 

provided that the count can be made to carry over into the next byte. On a 

16-bit computer this is automatically provided for within the processor’s 

instruction set, but an 8-bit processor may require extra programming. 

Forth is a natural 16-bit language that makes the computer behave as if it 

were a 16-bit machine even if it only has an 8-bit processor. In fact the vast 

majority of memory operations in Forth use 16-bit cells. An extended 

16-bit binary counter is shown overleaf. 
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Cell bit pattern 

High byte Low byte 

Count value 

00000000 11111111 255 
00000001 00000000 256 
00000001 00000001 257 
00000001 00000010 258 

00000010 00000000 512 

00000010 00000001 513 

00000011 00000000 768 
00000011 00000001 769 

11111111 11111100 65532 

11111111 11111101 65533 

11111111 11111110 65534 

11111111 11111111 65535 
00000000 00000000 0 

As you can see the use of a second byte greatly increases the range of 

numbers which may be represented in memory so that any number in the 

range 0-65535 may be accommodated. The 16-bit count value is construc¬ 

ted in memory so that the 8 least significant bits occupy the lower address 

and the 8 most significant the next address. The following Forth words 

may be used to perform a 16-bit count and display the results. 

@ ( addr—number) 

‘Fetch’. Returns the contents of the the 16-bit cell starting at the given 

address. 

u. ( data—) 

‘U-dot’. Displays the data item on the top of stack as a value in the range 

0-65535. 

pad ( —addr) 

Returns a safe address for general use. 

! ( number,addr—) 

‘Store’. Sets the contents of the given address to the number. 
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+! ( number,addr—) 

‘Plus-store’. Adds number to the contents of the given address. 

The unsigned contents of any 16-bit cell of memory may be displayed 

using: 

@ U. <RETURN> 

in the same way as for bytes using c@ . This is a completely harmless 

activity. The words! and + ! alter the contents of memory and must not be 

used indiscriminately since certain parts of memory are vital to the correct 

operation of the Forth system. The Forth word PAD returns to the stack 

the address of the start of an area of memory set aside as general purpose, 

normally about 64 bytes long. This address may be used quite freely and 

should be used in all initial experiments. The contents of PAD may be set 

equal to any value in the range 0-65535 using !, the desired value being 

placed on the stack prior to executing PAD. Thus the phrase: 

0 PAD ! <RETURN> 

sets the contents to 0 whilst: 

20 PAD ! <RETURN> 

sets it to 20. The contents of the cell may also be incremented by a given 

quantity using +! which expects the same input parameters as ! but adds 

the number into the cell rather than merely storing it there. Thus suc¬ 

cessive: 

2 PAD +! <RETURN> 

operations will count the value in PAD up by increments of 2. The contents 

of PAD may be displayed at any time by typing: 

PAD @ U. <RETURN> 

An equivalent word to !, present on all Forths, to operate on byte values 

only is C! and some systems also employ a c+! for maintaining single byte 

counts. 

Words introduced in this section: 

@ ( addr-—n) 

‘Fetch’. Returns the contents of the the 16-bit cell starting at the given 

address. 

C@ ( addr—n) 

‘C-fetch’. Takes the address given on the stack and returns the contents of 

that byte. 
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• ( n—) 
‘Dot’. Takes the byte data from the stack and displays it on the screen, 

u. ( un—) 
‘U-dot’. Displays the data item on the top of the stack as a value in the 

range 0-65535. 

pad ( — addr) 

Returns a safe address for general use. 

! ( n,addr—) 

‘Store’. Sets the contents of the cell at the given address to the number. 

+ ! ( n,addr—) 

‘Plus-store’. Adds number to the contents of the cell at the given address. 

C! ( b,addr—) 

‘C-Store’. Sets the contents of the given address to the byte value. 

c+! ( b,addr—) 
‘C-Plus-store’. Adds byte value to the contents of the given address. 

4.2 Addresses and data 

As we have seen, computer memory stores binary numbers and both 8-bit 

and 16-bit values have been used. What else can it store? The answer is 

nothing, binary numbers are the limit as far as computers are concerned. 

We may use larger numbers; 24-bit; 32-bit; 48-bit and so on by employing 

extra bytes and thus greatly extending the numeric range, but these are 

still just numbers. Since many computer applications require the process¬ 

ing of essentially non-numeric information, text or images for instance, it 

must be numerically encoded before the computer can handle it. This 

means that whilst we are restricted to the processing of numbers, the only 

real limitation on the information we can handle is our imagination in 

encoding the data. For example the binary number representing 65 held in 

a single byte of memory may in one set of circumstances be treated as 

literally the value 65, or in another context as a numerically encoded letter 

‘A’. This section looks at some of the many diverse ways of interpreting 

data items in memory, and in the process introduces a few simple Forth 

words which may be tried from the keyboard so that you can get a feel for 

the way in which these words interpret their data prior to to writing any 

programs. 
The simplest interpretation of the contents oi a memory cell is that 

employed in the last section, where it is treated as a count value - literally a 

number between 0 and 65535. This is the interpretation placed on the 

value by u. which displays the value on the top of the stack as an ordinary 

number falling in that range. The word . (‘dot’) treats the numbers in a 
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slightly different way, although the basic action is very similar. 

65535 . <RETURN> -1 ok 

-1 U. <RETURN> 65535 ok 

In neither instance is the anticipated result given, the word . treats 65535 

as if it were -1, and the word u. does the opposite. The reason for this is 

that both -1 and 65535 are represented internally by the computer using 

the same 16-bit binary number (111111 111 111 1111). This is tied up with 

the way in which computers perform arithmetic, as we will see in chapter 

8, but it is important to appreciate that different words will interpret a 

value in different ways. When . executes it treats only the least significant 

15 bits (bits 0-14) as representing the size of the number. Bit 15 (leftmost) 

- ordinarily the most significant bit of the value - is seen as the sign of the 

number, a 1 indicating that the number is negative, a 0 positive. Most of 

the Forth arithmetic functions also treat cell values in this w'ay, allowing 

us thus to incorporate the processing of minus numbers into our pro¬ 

grams. The use of bit 15 as a sign bit clearly cuts down the range of 

absolute values we can represent in a single cell. The maximum value for 

the magnitude of a 16-bit number is +32768, with any values greater than 

this being treated as negative. The total range of signed values on which 

we can operate is -32768 to +32768. By contrast U. treats the whole of a 

16-bit number as representing the value, as do all the memory operations 

(@ c@ ! C! +! and c+! so far) which use the top stack value as an unsigned 

value representing the memory address. As negative memory addresses 

are not allowed the full positive range 0-65535 can be used. Thus Forth 

systems naturally address 65535 bytes, or 64K of memory. 

In order to investigate further the properties of signed and unsigned 

numbers the following Forth arithmetic words may be used in conjunction 

with those words already introduced to perform very simple calculations. 

1+ ( n—n+1) 

Returns the given value incremented by 1 ■ 

2+ ( n—n+2) 

Returns the given value incremented by 2. 

@ ( nl,n2—nl+n2) 

Returns the sum of nl and n2. 

- ( nl,n2—nl-n2) 

Returns the difference between nl and n2. 

The words 1+ and 2+ act on a single stack parameter, leaving the value 

incremented by 1 and 2 respectively. Some Forth systems (notably 

Forth-79) also have a pair of complementary words i- and 2- for carrying 

out the corresponding decrements. 
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The words + and - are Forth’s general purpose addition and subtraction 

routines. They both require that two values be on the stack which are 

effectively removed during execution and replaced with the result. The 

order in which these two values are placed on the stack is unimportant for 

the addition since 6 + 3 is the same as 3 + 6, but in the case of subtraction 

the order is critical. Using - the top stack value is subtracted from the 

value immediately below it, and the difference returned. Here are some 

examples of the results of Forth arithmetic, others should be tried until 

you are happy about the concept of signed and unsigned numbers within 

the computer. 

0 1+ 1+ 1 + . <RETURN> 3 ok 

0 2+ 2+ 2+ . <RETURN> 6 ok 

0 2+ 1+ . <RETURN> 3 ok 

-1 1 + . <RETURN> 0 ok 

6 10 + . <RETURN> 16 ok 

6 -10 + . <RETURN> -4 ok 

-6 10 + . <RETURN> 4 ok 

-6 -10 + . <RETURN> -16 ok 

6 10 - . <RETURN> -4 ok 

10 6 - . <RETURN> 4 ok 

-10 6 - . <RETURN> -16 ok 

10 -6 + . <RETURN> 4 ok 

-10 -6 - . <RETURN> -4 ok 

Note that when displaying the minus numbers produced by Forth arith¬ 

metic using u. the higher the value of the signed number the lower the 

unsigned number displayed. 

- 1 U. <RETURN> 65535 ok 

- 2 U. <RETURN> 65534 ok 

- 3 U. <RETURN> 65533 ok 
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It has already been mentioned that typographic characters can be coded 

into 8-bit binary numbers, and it is in this form that text is transmitted 

between the computer and its peripherals (such as keyboard, screen or 

printer). The complementary Forth words KEY and emit deal with the 

input and output of single character data between keyboard character data 

between keyboard and computer, and between computer and screen, 

respectively. 

emit ( character value—) 

Treats the top stack item as an 8-bit character code and displays the 

appropriate character at the screen. 

KEY ( —character value) 

Waits for a keystroke and returns the character code associated with that 

key. 

When trying values with EMIT only numbers greater than 31 should be 

used, since the codes 0-31 are used for other purposes and do not yield a 

printable character. The following results should be obtained from emit: 

65 EMIT <RETURN> Aok 

66 EMIT < RETURN> Bok 

67 EMIT <RETURN> Cok 

These are the character codes for the first three letters of the alphabet, in 

upper case. Notice that there is no space between the character displayed 

and the ‘ok' issued by Forth. The character code for a space is 32, and this 

is used so frequently that a special word SPACE is defined to perform 32 

emit. To assist in the layout of screen displays the word spaces is also 

defined to perform SPACE a number of times according to the top value on 

the stack. 

10 SPACES 65 EMIT SPACE <RETURN> Aok 

8 SPACES 65 EMIT SPACE <RETURN> Aok 

The complementary function of collecting input from the keyboard is 

performed by KEY which requires no stack parameters. Entering: 

KEY <RETURN> 

suspends any further operations until a key has been pressed, whereupon 

the character code associated with that key is returned to the stack and an 

‘ok’ issued. Thus typing: 

KEY . <RETURN> 

followed by a keystroke allows the character code for any of the keys at 

your keyboard to be determined. 

In order to simplify the task of textual data transmission between the 
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many diverse types of computer and peripheral a number of standard 

codings have been adopted. The most notable of these is ASCII which 

stands for American Standard Code for Information Interchange. This is 

the code system employed by almost all Forth systems, although the 

occasional variation is encountered. The character codes used above are 

ASCII, i.e. 65 is ASCII for ‘A’, 32 for ‘space’ etc. 

So far we have referred to addresses and data as if they were completely 

distinct from one another, but with Forth this need not always be the case. 

An address can be treated as a piece of data or a data item as an address. 

Certain Forth words treat any 16-bit number as a machine address, the 

memory operations are examples of this. They require that the topmost 

stack value specify the address on which they are to operate but care 

nothing of how that address got there. Thus the address may have been 

produced as the result of a calculation as in the following phrase: 

PAD 80 + @ . <RETURN> 

which displays the contents of the cell which begins 80 bytes upwards in 

memory from pad. The actions on the stack are as follows: 

Operation Stack 

PAD —addr 

80 —addr,80 

+ —addr+80 

@ —data 
— 

Here we have specified the address for @ relative to a known location (pad) 

by means of a computation. This technique is called relative addressing and 

turns out to be a very valuable tool in programming. The ease with which 

Forth is able to process addresses as if they were data is largely responsible 

for its great flexibility and examples of computed addresses will appear in 

many of the programs in this book. 

Another method of manipulating memory addresses, known as indirect 

addressing, is also used extensively in Forth. Here instead of directly 

specifying the actual address on which we wish to operate we specify an 

address where the computer will find the address for the operation. The 

address which holds the effective address is know as a pointer, since it 

points the computer to the desired location. 

Suppose we are to operate on three data items in contiguous memory 

cells starting at pad+80. We may set up the location PAD to act as a pointer 

to this data with the commmands: 
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PAD 80 + PAD ! <RETURN> 

which compute the address of the first cell and store that value in PAD. To 
examine the contents of that cell we can use: 

PAD @ @ . <RETURN> 

which retrieves the effective address of the data with the first and the 
data itself with the second. This may seem a round-about method of 
retrieving the data but it offers possibilities not allowed for by directly 
specifying the effective address. This will not be fully appreciated until it 
comes to writing programs, but to get the feel of the technique use the 
following sequence of commands to alter the contents of the three memory 

cells: 

1 PAD 3 ! <RETURN> 

-stores 1 in 1st cell. 

2 PAD +! <RETURN> 

-points to next cell. 

2 PAD a ! <RETURN> 

-stores 2 in 2nd cell. 

2 PAD +! <RETURN> 

-points to next ceLl. 

3 PAD a ! <RETURN> 

-stores 3 in 3rd cell. 

PAD 3 a . <RETURN> 3 ok 

-contents of 3rd cell. 
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-2 PAD +! <RETURN> 

-point to previous cell. 

PAD 3 S . <RETURN> 2 ok 

-contents of 2nd cell. 

-2 PAD +! <RETURN> 

-point to previous celL. 

PAD a 3 . <RETURN> 1 ok 

-contents of 1st cell. 

Forth programs make extensive use of pointers since in many cases it 
greatly simplifies the processing. 

So far all data have been treated as separate values, a character, an 
address or a number. In many instances however we require to process 
whole clusters of associated data. For example, if we wish to display the 
message ‘Good Morning’ on the screen it is not convenient to perform this 
with a whole series of emit operations on the individual characters, 
particularly since the letters have meaning only by virtue of their associa¬ 
tion with the other letters in the message. This message could be held in 
memory as a sequence of 12 ASCII codes in consecutive bytes. A region of 
memory used to store a string of associated data is referred to as a memory 

string and the text message as an ASCII string. 

There are a number of Forth words which operate on strings of data, 
some of which will be used here to show how a memory string can be 
specified. A memory string has two qualities by which it may conveniently 
be identified. It has a starting point (a byte in memory containing the first 
element of the string) known as its base address, and it extends for a given 
number of bytes through memory and thus has a length or character 
count. The following words operate on whole strings of memory: 

expect ( addr,count—) 
Awaits a stream of keystrokes to the maximum number given or until a 
carriage return, and stores the ASCII codes in successive bytes of memory 
beginning at the given address. 
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TYPE ( addr,count—) 

Types out the string of ‘count’ characters beginning at the given address. 

BLANK ( addr,count—) 

Stores ASCII 32 in each of the elements of the specified string. 

ERASE ( addr,count—) 

Stores zeros in each element of the specified string. 

FILL ( addr,count,char—) 

Stores the data value given on the top of the stack in each element of the 

string specified immediately below. 

In each case the memory string to be operated on is specified by placing 

first the base address on the stack, and then the string length in bytes. Try 

the following: 

PAD 20 BLANK <RETURN> ok 

PAD 20 TYPE <RETURN> ok 

PAD 20 EXPECT <RETURN> Good Morning <RETURN> ok 

PAD 20 TYPE <RETURN> Good Morning ok 

First, a string of 20 bytes is ‘blanked’ using blank (on some Forth 

systems this word has the name blanks). Typing out the contents of the 

20 bytes starting at pad shows that this has been done successfully. The 

computer is then instructed to EXPECT a string of up to 20 characters from 

the keyboard. Execution is suspended until either 20 characters have been 

received or a return is detected (in which case EXPECT ceases operation 

immediately). Each of the characters keyed in is stored in the string 

starting at pad as shown in diagram 4.1. 

Keyed: 

Pad End of string 

Diagram 4.1. A 20 character string at PAD 

Many Forth implementations contain the word DUMP, which will display 

the contents of each byte of a string. This may be used to examine the 

character codes of the string beginning at PAD as follows: 
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PAD 20 DUMP <RETURN> 71 111 111 100 32 77 111 114 

110 105 110 103 0 0 32 32 32 32 32 32 ok 

Using a method somewhat similar to the indirect addressing described 

above, it is common practice to allow a string to specify its own length by 

using the first byte in the string to hold a character count for the rest of the 

string. If stored in this form the message ‘Good Morning’ at PAD would be 

constructed as shown in diagram 4.2. 

Diagram 4.2. A character string with byte count 

It could be displayed by the sequence: 

Operation Stack 

PAD 1 + —addr 

PAD C@ —addr count 

TYPE ... 

This method of storing strings is particularly convenient for programming 

and allows strings to be packed together in memory rather than allocating 

space which may just hold blank characters. 

ASCII strings are not the only data treated as string data. A string may 

be a list of discrete data items which have some other linking factor. For 

example, a memory string might be used to hold the number of units of 

electricity consumed by a household in each of the months of the year. We 

may wish to operate on all the data, e.g. sum it to get a yearly figure, on 

groups of data as for quarterly information, or on the individual monthly 

figures. It would be convenient if we could specify the data we wish to 

access in terms of the month. This may be done by arranging the data in 

memory as shown in diagram 4.3, assuming that each month is allocated 

one byte only. 
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Month No. count 1 2 3 4 5 6 7 8 9 10 11 12 

(offset) 
Diagram 4.3. Monthly consumption array 

The first byte in the string contains the number of elements in the rest 

of the string; data for a given month may be addressed by adding the 

month number (Jan=l Dec=12) to the base address (PAD). Thus the 

month number specifies the ‘byte offset’ into the string. The data for 

March could be displayed by: 

PAD 3 + C@ . <RETURN> 

Strings which are accessed in this way are normally known as data tables 

or arrays and the method of generating the address of an element as indexed 

addressing. In this case the month number acts as an index into the table. 

Since tables are often used to accumulate numeric data the Forth word 

ERASE may be used to set all the values in the table to zero. It is used in 

exactly the same form as blank(S), requiring a base address and a byte 

count. A further word FILL is of more general use allowing strings to be 

filled with any byte data. It requires an additional stack parameter as the 

top stack value, with the address and count directly beneath. Its operation 

is otherwise similar to that of ERASE and BLANK. 

Computer memory may thus hold a wide variety of data types, as well as 

machine instructions for execution by the processor. In order efficiently to 

utilize the memory space available, regions of memory are normally dedi¬ 

cated to particular uses. For instance, data transfers between the computer 

and its peripherals generally take place via regions of memory called 

buffers, key codes from the keyboard being sent to a keyboard input 

buffer, and text for display being transmitted via some output buffer. It is 

also customary to have all the programs together in one region of memory 

separate from the data, to save the processor having to jump around all 

over memory to execute its programs. In most languages the way in which 

the memory is organized is transparent to the user, but programming in 

Forth allows such direct control over the use of memory that it is impor¬ 

tant for you to be conscious of how the various regions of memory are 

organized at an early stage. We normally describe memory organization in 

terms of a memory map - a diagram and/or list of important addresses 

showing the functions of different areas of memory. 
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Words introduced in this section: 

1+ ( n—n+1) 

Returns the given value incremented by 1. 

2+ ( n—n+2) 

Returns the given value incremented by 2. 

1- ( n—n-1) 

Returns the given value decremented by 1. 

2- ( n—n+2) 

Returns the given value decremented by 2. 

+ ( nl,n2—nl+n2) 

Returns the sum of nl and n2. 

- ( nl,n2—nl-n2) 

Returns the difference between nl and n2. 

emit ( char—) 

Treats the top stack item as an 8-bit character code and displays the 

appropriate character at the screen. 

KEY ( —char) 

Waits for a keystroke and returns the character code associated with that 

key. 

expect ( addr,ct—) 

Awaits a stream of keystrokes but to the maximum number given or until 

a carriage return, and stores the ASCII codes in successive bytes of 

memory beginning at the given address. 

TYPE ( addr,ct—) 

Types out the string of ‘count’ characters beginning at the given address. 

SPACE ( —) 

Types out one space at the output device. 

spaces ( n~) 
Types out n spaces at the output device. 

BLANK ( addr,ct—) 

Stores ASCII 32 in each of the elements of the specified string. 

ERASE ( addr,ct—) 

Stores zeros in each element of the specified string. 

fill ( addr,ct,char—) 

Stores the data value given on the top of the stack in each element of the 

string specified immediately below. 
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DUMP ( addr,ct—) 

Types out the byte content of each element of the string described. 

4.3 The Forth memory map 

When writing Forth programs, it is possible to utilize any portion of 

memory for virtually any purpose, the choice is entirely with the pro¬ 

grammer. However, Forth itself occupies and uses some of the space 

available and it is important that user programs do not interfere with this. 

Although the physical addresses vary from one Forth system to the next, 

due to differences in the hardware, the basic layout of the memory is fairly 

standard. The actual addresses of various important locations can be 

investigated from the keyboard. 

Diagram 4.4 is a simplified Forth memory map showing most of the 

main elements of the system. The regions of memory are shown, starting 

with the system variables at the lowest addresses and ending with the disk 

block buffers at the highest. To the right of the main diagram three 

important locations are indicated along with the operations which will 

place that address on the stack. Other important elements of Forth will be 

encountered later in this book but for the next few chapters we need only 

be aware of those shown. 

High Addresses 

Low Addresses 

Disk Block Buffers 

Input Message Buffer 

Parameter Stack 

Scratch Pad 

User Dictionary 

Forth Kernel 

System Variables 

-S0 (h 

-PAD 

-HERE 

Diagram 4.4. A simple Forth memory map 
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The System Variables are shown occupying the bottom memory 

addresses. This is a region of memory used by Forth to hold data critical to 

its operation. Arbitrarily tinkering with the contents of these addresses 

will inevitably cause a system crash. 

Above the system variables two regions are shown, the Forth kernel or 

nucleus and the user dictionary. Between them these comprise the dic¬ 

tionary, where all the Forth words are held. The nucleus comprises those 

Forth words already defined in the system, new words written by the user 

being compiled into the user dictionary. The two regions are not physi¬ 

cally distinguishable since new words are compiled into the dictionary in 

exactly the same form as those already present. The current top of the 

dictionary can be found by typing: 

HERE U. <RETURN> 

This is the address where the compiler will add new words and is adjusted 

automatically as compilation takes place. When the Forth system is first 

purchased and loaded the value returned by HERE will be the next free 

location above the top of the nucleus. This value will increase as new 

Forth commands are added. 

Above the top of the user dictionary lies a region of memory used as a 

general purpose work region available to the user. The address of the start 

of this region is returned by PAD which we have already encountered. It 

normally extends for at least 64 bytes (32 cells) above pad. The address 

returned by PAD is always computed relative to the top of the dictionary, 

the exact offset varying from one system to the next. As here increases so 

too does PAD so that this ‘scratch pad’ region is seen as floating a fixed 

distance above the user dictionary. The byte offset between HERE and PAD 

may be determined by typing: 

PAD HERE - . <RETURN> 

and will often be 32 bytes in length. The space between HERE and PAD is 

used by the Forth system, but within certain restrictions can also be used 

by the programmer. 
At an unspecified distance above PAD lie the input message buffer and the 

parameter stack. The input message buffer is used by Forth to receive 

messages from the keyboard. It is from here that the interpreter interprets 

the commands we issue it at the keyboard. The start location of the input 

message buffer is held in a pointer. The address of this pointer can be 

found by typing: 

S0 U. <RETURN> 

and the location of the first byte in the buffer by typing: 

S0 @ U. <RETURN> 
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Note that on some systems the word TIB (Terminal Input Buffer) may take 

the place of SB. The input message buffer normally extends upwards in 

memory for 80 bytes. When the system receives a <RETURN> from the 

keyboard, or when 80 characters have been received since the last 

<RETURN>, Forth transfers the whole line just typed to a string 

pointed to by S0, the overall effect being the same as the sequence s@ 80 

EXPECT. 

The region immediately below SB is reserved for the parameter stack, 

known simply as the stack - the place where Forth words find their 

parameters. So far the stack has just been described as a pile of numbers 

without any explanation as to what form this ‘pile’ might take. The stack is 

a region of memory which is described by two pointers. One pointer (Sfl) 

contains an address related to the bottom or base of the stack, the second 

pointer (given various names including SP for stack pointer and ’S) points 

to the current top of the stack. Each number in the pile occupies a single 

cell of memory. Initially the stack is empty and the contents of the stack 

pointer are set to 2 less than the contents of Sfl, this being the address of 

the cell where the first number will be placed. If you have a 79-Standard 

Forth the word SP@ may return the address of the top of the stack, and can 

be used in conjunction with u. to investigate the operation of the stack. 

Placing a number on the stack has the effect of storing that number in 

the cell pointed to by SP and decrementing the contents of the pointer by 

two, so that it points to the cell immediately below that just used. Thus as 

successive values are added to the stack, the top of stack moves down 

through memory towards pad and low1 address numbers. The stack is said 

to ‘grow' down’ in memory while the dictionary ‘grows up’. The stack 

pointer is not allowed to drop below the value in SB and if it does so an 

error message is issued by the system to say that the stack is empty. The 

act of removing a value from the stack has only one effect. The contents of 

the stack pointer are incremented by two so that the next cell up is pointed 

to. There is a fixed amount of memory allocated for stack use w'hich varies 

from one system to the next, but is always at least 48-bytes. This provides 

sufficient room for 24 stack parameters at any one time, which is always 

sufficient. 

At the top of the memory lie the disk block buffers through which all 

data transfers between Forth and the disk take place. Each of these buffers 

is normally 1024 bytes (IK) in length and there should be at least two 

available for efficient disk handling. The way Forth communicates with a 

disk is discussed fully in Chapter 10. The buffers are used to edit pro¬ 

grams onto the disk as well as for general data processing. 
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Words introduced in this section: 

S0 ( -addr) 

Variable containing the initial value for the stack pointer i.e. the address of 
the bottom of the stack. On most systems this also indicates the start 
address of the input message buffer. 

HERE ( —addr) 

Returns the address of the next available dictionary location. 

SP@ ( —addr) 

Return the address of the top of the stack (before SP@ is executed). 
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5.1 Colon definitions 

In section 3.3 we saw how the set of words provided by the language 

Cofforth might be combined in more powerful functions to program a 

coffee-making task. You may not be suprised to learn that none of these 

words are provided by Forth itself! The previous chapter introduced some 

real Forth words, and this small set is already enough to start creating 

some programs of your own. Remember that all the words you define can 

subsequently be treated just as if they were a natural part of Forth - 

indeed in a sense they are. 

Before we start defining any new words let’s take a look at the set of 

words already available. Try typing: 

VLIST <RETURN> 

You should find that a long list of words scrolls up the screen. If it doesn’t 

work it may be that the facility is not available - PolyForth for instance 

does not include VLIST - in which case you should ignore the next 

paragraph. Similarly the exact result of vlist will vary, some systems 

printing out only the first three characters of each word. Don’t worry 

about what any of the words actually means for the moment, just try to 

make a note of the very first word that appears w’hen you use vlist. 

Now key in the following: 

: HELLO .” HI THERE ” ; <RETURN> 

If you make a typing error (like leaving out a space) keep trying until 

Forth responds with ‘ok’, then do a VLIST again. This time you should find 

that HELLO is the first w'ord typed out. You have added a word to the 

Forth dictionary. To execute your new' program simply type: 

HELLO <RETURN> 

Forth will respond by printing out: 

HI THERE ok 

on the same line. The general format for defining new' Forth words 

therefore is: 
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: (Name) (Code to execute) ; 

The colon at the beginning (which is itself a Forth word) tells Forth to 

compile a new colon definition, with the name which follows. Any character 

except a space can be used in the name. The semicolon tells Forth that the 

definition is complete and that it is to stop compiling. Note that unlike 

before, when Forth executed the words you entered immediately, the code 

within a colon definition is not executed until the word being created is 

used. So instead of typing out HI THERE when you first entered it, it does so 

when the word HELLO is entered. 

In the definition of hello we used a word which you have not yet come 

across. It looks like this: 

and is pronounced ‘dot-quote’. This word will type out everything fol¬ 

lowing it until it finds a quote (”). We will be using .” together with the 

words you met in the previous chapter to create some more simple 

programs. Another word we will be using is CR which stands for carriage 

return. This has a similar effect to pressing the return key in that it moves 

the text cursor down one line. It means that the words typed out by .” can 

be positioned on different lines of the screen. 

You should already have defined a word called HELLO which simply 

types out HI THERE. To show the versatility of Forth we are going to 

ignore this and define hello again with a slightly different action. Type in 

the following (remember the spaces): 

: HELLO CR HITHERE ” ; <RETURN> 

You may find that a message is typed out to the effect that hello is being 

redefined but this shouldn’t matter. Now try using HELLO just as before by 

simply typing it in followed by <RETURN>. You should find that the 

words ‘HI THERE ok’ are typed on the line underneath hello. Now 

define another similar word, which uses hello, as follows: 

: ASK-NAME HELLO .” WHAT IS YOUR 

NAME?” ; <RETURN> 

Executing ask-name will type out: 

HITHERE WHAT IS YOUR NAME? ok 

on the line underneath. If it doesn’t you have almost certainly made a 

typing error. Don’t worry! Even the most experienced programmers make 

mistakes all the time. You should think about what actually has happened 

and look at what you have done to achieve it, until you discover the 

problem. This is the process called ‘debugging’. 

Now we will define a word to input a name entered from the keyboard. 
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By input we mean that the name typed in will be transferred to an area of 

memory for safekeeping. You may remember that the Forth word pad 

leaves an address on the stack pointing to an area of memory especially set 

aside for such use. We will allow up to twenty characters (i.e.letters) for 

the name, which will thus occupy twenty bytes of memory. Before the 

name is entered we must clear the area of memory we are about to use with 

BLANK (BLANKS on some systems). Our word thus looks like this: 

: GET-NAME PAD 20 BLANK PAD 20 EXPECT ; <RETURN> 

Looking at the definition of this word we can see that the phrase PAD 20 

appears twice. Its function is to leave the appropriate numbers on the 

stack to describe an area of memory to BLANKS and EXPECT. It makes 

sense, therefore, since we are bound to want to access this area of memory 

later on, to define a separate word whose code is simply PAD 20: 

: STASH ( -addr,count) PAD 20 ; <RETURN> 

The bit enclosed in brackets is a comment which has no effect on stash 

(you can leave it out if you like). In fact the opening bracket is a Forth 

word which causes everything up to a closing bracket to be ignored. This 

is whv it must be followed by a space. The comment between the brackets 

represents the effect of the word stash on the stack. It means that STASH 

will leave an address with a count on the top of it. 

We can now redefine get-name using our new word: 

: GET-NAME STASH BLANK STASH EXPECT : 

The process of identifying duplicate sections of code and defining them as 

separate words is called ‘factoring out’, and is one of the most satisfying 

aspects of Forth programming. 

If you type in GET-NAME (followed by <RETURN>) the text cursor 

should appear just in front of the word, waiting for you to type in a name. 

You will need to press <RETURN> again (or type in twenty characters) 

before Forth says ‘ok’. When you are happy that the words ASK-NAME and 

GET-NAME are working properly they can be combined in a word to 

perform both functions: 

: IDENTIFY ASK-NAME GET-NAME ; <RETURN> 

This is our main input routine and consists of a prompt (ask-name) and an 

opportunity to enter up to twenty characters from the keyboard into the 

computer’s memory. 

Having input a name into the computer we now need a way of retrieving 

it. You have already come across a word which types out the contents of an 

area of memory to the screen called type, and as it happens it expects to 

find an address and a count on the stack, which is exactly what our word 

STASH provides. Our new word looks like this: 
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: SAY-NAME STASH TYPE ; <RETURN> 

You can check this works by executing get-name immediately followed 

by say-name: 

GET-NAME SAY-NAME <RETURN> 

Next we will define a word to preface the name with a greeting: 

: BE-NICE CR NICE TO MEET YOU ” ; <RETURN> 

The two words above can be combined into an output routine as follows: 

: ACKNOWLEDGE BE-NICE SAY-NAME ; <RETURN> 

Finally, we can use the input and output routines we have created to 

define a word which asks your name and then uses it to reply: 

: MEETING IDENTIFY ACKNOWLEDGE ; < RETURN> 

Try executing MEETING a few times entering different names to convince 

yourself that it works. 

Let us now look back at the words we have just defined. This will allow 

you to start afresh if you have run into problems, and also to study the way 

in which they are built up. 

: HELLO CR HI THERE " ; 

: ASK-NAME HELLO WHAT IS YOUR NAME ? " ; 

: STASH ( —addr,count) PAD 20 ; 

: GET-NAME STASH BLANKS STASH EXPECT ; 

: IDENTIFY ASK-NAME GET-NAME ; 

: SAY-NAME STASH TYPE ; 

: BE-NICE CR NICE TO MEET YOU " ; 
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: ACKNOWLEDGE BE-NICE SAY-NAME ; 

: MEETING IDENTIFY ACKNOWLEDGE ; 

You have seen how words can be added to the dictionary. It follows that 

there must be some way of removing these. Consider the order in which 

the words in this section were defined. Bearing in mind that the most 

recently defined words are added to the top of the dictionary, we can 

represent the order of our words as follows - with the last word defined at 

the top of the list just as with VLIST: 

MEETING 

ACKNOWLEDGE 

BE-NICE 

SAY-NAME 

IDENTIFY 

GET-NAME 

STASH 

ASK-NAME 

HELLO 

Let us suppose that for some reason we had decided to remove BE-NICE 

from our list of words. Because acknowledge uses be-nice it could no 

longer operate if the latter were not present. Clearly the word ACKNOW¬ 

LEDGE will therefore also have to be removed, acknowledge is in turn a 

vital part of MEETING - so this too must go. In this way the removal of 

BE-NICE has a snowball effect on the portion of the dictionary above it. 

Although the removal of a word may not necessarily affect all the words 

above it, because of the way Forth operates it is essential that when one 

word is removed all words defined after it (i.e. above it in the dictionary) 

are removed as well. Such is the action of the Forth word FORGET. This 

expects to be followed by the name of one of the words in the dictionary. It 

will then remove this word and every other word defined since its creation. 

Thus if you type in: 

FORGET BE-NICE <RETURN> 

then the three words meeting, acknowledge and be-nice will all disap¬ 

pear and SAY-NAMF. will become the topmost word in the dictionary. If we 

wanted to remove all the words we had just created then forget hello 

would reset the dictionary to its original state (well nearly!). 

One final point about FORGET concerns words which have been defined 

more than once. In this case FORGET will act on the most recent definition 

only (i.e. the one which is highest in the dictionary). This means that if you 
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have followed this section through, the word hello will in fact have to be 

forgotten twice to clear the dictionary, since it was defined twice. 

You should try creating some other programs of your own and then 

using vlist and forget to see the effect on the dictionary. Note that if 

you redefine a word only the most recent definition will be accessible, but 

that the original version can be ‘uncovered’ by FORGETting the word once. 

It is essential that you understand how to create and remove words before 

continuing with this chapter. 

Words introduced in this section: 

VLIST 

Lists out all the words in the dictionary. Not available on all systems. 

: (NAME) 

Colon. Creates a new Forth word with the name (NAME) and compiles 

the code which follows until a ; is reached. 

Semi-colon. Terminates a colon definition and causes Forth to stop com¬ 

piling. 

Dot-quote. Prints out at the terminal the string which follows it up until a 

single quote. On some systems this word can only be used within 

programs. 

CR 
Carriage return. Moves the text cursor to the beginning of the next line on 

the screen. 

FORGET (NAME) 
Removes the word (NAME) and all subsequent definitions from the 

dictionary. 

( 
Causes Forth to ignore the text that follows up until a closing bracket. 

5.2 Editing program source on disk 

When you key in colon definitions the words are compiled and added to 

the Forth dictionary, but the source code (i.e.what you actually key in) is 

lost as soon as it disappears off the screen. This means that if you make a 

mistake the whole word must be typed in again. It also means that the 

entire set of words must be re-entered if you turn the computer off, since 

new definitions in the dictionary are not normally saved. Clearly this is 
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impractical from a programming point of view, so it is vital that we find 

some way of saving the source programs. 

As we have said already, Forth programming is impractical using cas¬ 

sette based storage and this section assumes your system includes at least 

one disk drive and has standard Forth disk-handling facilities. It is recom¬ 

mended that you study the documentation covering the editor for your 

particular version of Forth, since they vary enormously in operation and 

thus we can only discuss general principles. 

In order to start editing programs onto disk you must first prepare an 

empty work disk. Most computers require disks to be formatted before 

they are used. This simply prepares the disk for the expectations of a 

particular machine or operating system. Where appropriate the format 

utility should be well documented in the manuals that came with your 

system. It may be directly accessible from Forth, or you may have to do it 

from the operating system. 

For editing purposes Forth views the disk as a number of contiguous 

blocks of memory called ‘screens’, each of which is normally IK (1024 

bytes) long. The exact number of screens available will depend on the 

capacity of your disk drive. Each of the screens is assigned a number 

starting at zero, much like memory addresses. 

When you have prepared a disk and it is positioned in the drive type: 

10 LIST <RETURN> 

You should find that screen number 10 of the disk is listed out on the 

screen as 16 lines of 64 characters each (16 * 64 = 1024), and that each line 

begins with a line number (0 to 15). The latter are purely for reference 

purposes. At the top of the listing there should be some indication of 

which screen number it is. At the moment the screen will be full of the 

character generated by formatting - which is not always blank. 

To clear the editing screen we must first enter the Forth editor. The 

editor commands are usually held in a different vocabulary to other Forth 

words. The concept of vocabularies is discussed in Chapter 11 and for the 

moment all you need to know is that by typing: 

EDITOR <RETURN> 

a number of words are made available that would not otherwise be 

accessible. Rear in mind that Forth needs very little convincing to reverse 

the action of this word, thus denying access to the editor. If you suddenly 

find that Forth is not accepting editor commands then type in editor and 

try again. 

Having listed out screen number 10 it has now become current, which 

means that all editing commands will act upon it. The current editing 

screen is usually held in an address given by the word scr. Thus the 

phrase: 
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SCR @ . <RETURN> 

should now print out 10. On some systems (notably Polyforth) the word 

which clears a screen makes use of this fact and does not require the 

screeen number to be used again. In this case the following will clear the 

screen to blanks (ASCII 32) and list the screen out again: 

WIPE <RETURN> 

Many Forth systems do not include this word, and in such cases the 

following must be used instead: 

10 CLEAR < RETURN> 

If you tried wipe without success you may have to re-declare the editor 

vocabulary before clear can be used, clear does not list out the blanked 

screen, and to do this you can simply type: 

L <RETURN> 

rather than use LIST again. L lists out the current editing screen - but you 

must be in the editor vocabulary to use it. Try listing out and clearing 

some other screen numbers using the words above. 

You will need to read the documentation that came with your system to 

find out how source code is actually edited onto the disk screens, since 

there are few standards in this area. Some implementations use a screen 

editor which allows use of the cursor keys and means that text is entered 

directly onto the screen. Others include a line editor, where single charac¬ 

ter commands are used to insert and delete strings of text. You should 

spend some time acquainting yourself with all the commands available on 

your system. 

Because of the way Forth handles disks the editing screens are held in 

memory whilst they are in use. To write the information back to the disk 

itself you must use the word save-buffers, ar alternatively flush. Once 

you have done this successfully the source code is safely stored on the disk, 

and can be listed out at any time by LISTing the appropriate screen 

number. 

When source programs have been edited onto the disk they can be 

compiled by typing: 

10 LOAD <RETURN> 

This literally treats the screen pointed to by the number on the stack as if 

it were input from the keyboard, and it thus interprets the screen. Pro¬ 

grams defined using : and ; are hence compiled into the dictionary. 

One final word which may be useful at this stage is INDEX. This is again 

not available on all systems. It expects two numbers on the stack, both 

representing screen numbers. It will list out the first 64 characters of each 
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screen between (and including) the two numbers given. Thus: 

10 20 INDEX <RETURN> 

will list out the first 64 characters of screens 10 to 20 inclusive. Because of 

the action of index it is customary to use the first 64 characters of each 

screen (i.e. the first line) for some description of the code which follows - 

enclosed in brackets just like stack comments. 

As an exercise try editing the definitions created in the previous section 

onto screen 10, then try out the various words in this section. 

It is recommended that from now on you edit all programs onto disk 

and compile them using load, since this is the way that Forth pro¬ 

grammers operate. Only short experimental programs should be defined 

directly from the keyboard. For this reason the example programs in the 

rest of this book will not be terminated with <RETURN>, since it is 

assumed they will be put onto disk. Where words or phrases are to be 

keyed in directly we will continue to use <RETURN> to indicate that the 

carriage return key must be pressed at the end. 

Words introduced in this section: 

list ( n~) 

Lists out the disk screen indicated by the number on the stack as 16 lines 

of 64 characters. Makes the screeen current. 

EDITOR 

Allows access to the EDITOR vocabulary. 

scr ( -addr) 

Leaves the address containing the current editing screen number. 

WIPE 

PolyForth word. Initializes the current editing screen to blanks and lists it 

out. 

CLEAR ( n~) 

Initializes the screen number indicated by the number on the stack to 

blanks. 

L 

Lists out the current editing screen as in list, 

index ( low,high-) 

Lists out the first 64 characters of the screen numbers between low and 

high (inclusive). 

LOAD ( n~) 

Interprets the screen indicated by the number on the stack as if were 

keyboard input. 
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5.3 Variables and constants 

Colon definitions are not the only kind of Forth word, but rather represent 

the most important class of words. We will be looking more deeply at 

classes of words, and how to create your own variations, in Chapter 12. 

For present purposes you just need to be aware of two other classes of 

words (apart from colon definitions) which are provided with a Forth 

system. 

You have already met some words which leave addresses on the stack as 

pointers to important locations in memory, pad is such a word, leaving an 

address which varies depending upon the position of the top of the 

dictionary. Sometimes we want to allocate particular addresses for our 

own use, generally to hold some variable value. 

Imagine you control a fluffy toy factory and want to use a computer to 

keep a track of your stock. The first thing you must do is to allocate a 

location in memory which will contain the number of toys in stock. This 

can be done using the defining word variable (a defining word is simply 

one which is used to define another word), variable creates a new Forth 

word with the name that follows, just as : does, except that no code is 

needed. Instead a cell (i.e. two bytes) of memory is reserved and the new 

word is given the function of placing the address of this location on the 

stack. We will call the variable which is to hold the total stock of fluffy toys 

FLUFFIES and it can be created with the phrase: 

VARIABLE FLUFFIES 

Note that on some systems (notably FIG Forth) the word VARIABLE 

expects an initial value on the stack in which case you will have to use: 

0 VARIABLE FLUFFIES 

Remember that these should be edited onto disk and created using LOAD. 

If you now type in: 

FLUFFIES . <RETURN> 

Forth should print out the address allocated for our stock count. To 

retrieve the value held in this address we will need to use the word @ 

(fetch) described in Chapter 4: 

FLUFFIES @ . <RETURN> 

We can make a word for this to make life simple. The phrase @ . is used so 

much in Forth that a special word is provided with this action - ? - and we 

will use this in our definition: 

: STOCK? FLUFFIES ? ; 

Running stock? should reveal that the variable fluffies contains zero - 
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that is to say we currently have none in stock. 

Using the word +! (which increments the value held in the address on 

the top of the stack by the number underneath) we can define a word 

which will increase our stock levels depending on how many have been 

made: 

: MADE ( n-) FLUFFIES +! ; 

Note the comment in brackets which means that the word expects a single 

number on the stack. MADE is used as in: 

20 MADE <RETURN> 

which would add 20 to the stock level. Try running made with different 

values using STOCK? to make sure that the stock level has been correctly 

adjusted. For convenience the following word can be defined to reset the 

stock level to zero: 

: NO-FLUFFIES 0 FLUFFIES ! ; 

As well as producing fluffy toys it helps your cash flow if you can actually 

sell some as well! You thus need a word that subtracts the number sold 

from the stock level. The best way to do this involves the use of a new 

Forth word - negate. This reverses the sign of the number on the top of 

the stack. For example keying in: 

10 NEGATE . <RETURN> 

will cause Forth to print -10, whilst: 

-10 NEGATE . <RETURN> 

will print out 10. We will be explaining how this works later on, but you 

should play with NEGATE until you are happy with its action. The word 

which decrements our stock level according to how many have been sold 

looks like this: 

: SOLD ( ~) NEGATE FLUFFIES ’+; 

and it is used in exactly the same way as made, expecting the number sold 

on the top of the stack. Thus: 

20 SOLD <RETURN> 

should subtract 20 from our stock level. 

Variables like fluffies are used frequently in Forth, and they form the 

basis of more complex uses of memory. The ability to access locations in 

memory using words instead of addresses is vital to the readability and 

portability of your programs. Variables provide a means for long term 

storage of values and as such are an alternative to the stack for passing 

numbers between programs. If a value needs to be preserved throughout 
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an application or even across a number of quite different words, it should 

be assigned as a variable. Just like colon definitions variables are placed in 

the dictionary and will thus appear in a VLIST and can be used with 

FORGET. 

Sometimes we want to use in our applications values which we do not 

expect to change. Such values are called constants, and Forth provides a 

simple way of creating these, just as for variables. There are two differen¬ 

ces between a variable and a constant. Firstly, the value of a constant is set 

up once and for all when it is created and is not changed whilst the 

programs are being executed. Secondly, whilst a variable leaves the 

address where a value can be found on the stack, a constant yields the 

value itself and does not therefore require the use of operators such as @ 

and!. 
Let us suppose that production in our fluffy toy factory had stabilized at 

twenty per hour. We could use this information to calculate the total 

number of toys manufactured from the hours worked. First we need to 

define our hourly production as a constant: 

20 CONSTANT FLUFFIES-PER-HOUR 

It can then be used to calculate production over a given number of hours 

using the arithmetic operator * (multiply). Like + and - this expects two 

numbers on the stack, it will replace them with their product. 

: HOURS-WORKED ( n- ) FLUFFIES-PER-HOUR * MADE ; 

This can then be used just like made, except that it is past the number of 

hours that have been worked. Thus typing: 

8 HOURS-WORKED <RETURN> 

should increment our stock level (as given by stock?) by 160. 

Similarly we may want to sell our fluffy toys in boxes. We have decided 

that ten fluffy toys fit nicely into a box, and thus the following is defined: 

10 CONSTANT FLUFFIES-IN-BOX 

Our stock level can now be adjusted given the number of boxes sold using 

the following program: 

: BOXES-SOLD ( n-) FLUFFIES-IN-BOX * SOLD; 

such that the phrase: 

15 BOXES-SOLD <RETURN> 

would subtract 150 from the value in fluffies. 

Our final stock control application, which demonstrates the use of both 

variables and constants now looks like this: 
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VARIABLE FLUFFIES 

: NO-FLUFFIES 0 FLUFFIES ! ; 

: STOCK? FLUFFIES ? ; 

: MADE ( n—) FLUFFIES +! ; 

: SOLD ( n—) NEGATE FLUFFIES +! ; 

20 CONSTANT FLUFFIES-PER-HOUR 

: HOURS-WORKED ( n—) FLUFFIES-PER-HOUR * MADE ; 

10 CONSTANT FLUFFIES-IN-BOX 

: BOXES-SOLD ( n—) FLUFFIES-IN-BOX * SOLD ; 

You may be thinking that it would be easier just to include 20 and 10 in 

our programs instead of the constants FLUFFIES-PER-HOUR and FLUFFIES- 

IN-BOX. There are two main advantages to using constants rather than 

their values. The first is concerned purely with readability. Remember 

that you may have to correct problems or make changes to programs well 

after they were originally created. The word FLUFFIES-IN-BQX tells you 

exactly what meaning the value has, whilst just 10 gives you no clue as to 

what it represents. 

The other great advantage in using constants is that if, for instance, you 

started using bigger boxes to pack your fluffy toys you need only change 

the value set up as fluffies-in-box (and recompile the programs) to 

institute the change throughout the application. This makes the source 

code much easier to adapt to different constraints, in this case allowing the 

same code to be used for many different fluffy toy factories simply by 

changing the values of the constants used. Without the use of constants we 

would have to search the entire source code for references to the value in 

question to achieve the same result. In extensive applications this can take 

considerable time and effort! 
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Words introduced in this section: 

VARIABLE (NAME) 

Creates a variable named (NAME) and allocates a cell of memory. When 

(NAME) is used the address of the cell is left on the stack. 

? ( addr-) 

Equivalent to @ . in that it prints out the contents of the address on the 

stack. 

n constant (NAME) 

Creates a constant named (NAME) which when used will leave the value n 

on the stack. 

NEGATE( n-n) 

Reverses the sign of the top stack item. 

* ( n,n—n*n) 
Takes the top two stack items and multiplies them together leaving the 

product. 

5.4 Naming conventions 

You can see from the names we have chosen for our programs that Forth is 

not particular about what you choose to call your words. Clearly, however, 

it pays to use names which actually mean something to you, and which to 

some extent describe the action of the word. In this way your programs 

can be made highly readable and may end up looking almost like English. 

When a system stores the entire name of a word in the dictionary long 

names will result in more memory being used. Because Forth is so 

compact in this respect anyway you shouldn’t find that this is a problem 

except in very large applications. Thus the only disadvantage in using long 

descriptive names is the time it takes to key the programs in. 

Many systems only store the first three characters of a name together 

with a count of the actual number of characters. In such cases we say that 

only three characters are significant. This would mean, for instance, that 

the names fluffies-made and fluffies-sold would be indistinguishable 

to Forth since they both consisting of 13 characters and start with FLU. If 

your system does behave like this you should always bear it in mind when 

thinking up program names. 
Often it is possible to alter the number of significant characters in a 

program name. Generally up to a maximum of 31 characters can be made 

significant. The number of significant characters is usually held in a 

variable called WIDTH, though the mechanism by which it is changed 
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varies. PolyForth treats width as two byte variables (instead of a single 

cell), one containing the significant characters for the very next word to be 

created (in width) and the other the default number of significant charac¬ 

ters (width i+). In this case to set the number of significant characters 

permanently to its maximum of 31 the following phrase must be used: 

31 WIDTH C! 31 WIDTH 1+ C! 

Other systems may include WIDTH as a constant just for reference 

purposes. This facet of your system should be well documented in the 

programmer’s manual. 

There are two ways in which your words can be made more readable. 

One is to give them names which relate to their specific function within the 

application. The words defined in the previous section are a good example 

of this approach. Another technique involves the use of common prefixes 

or suffixes (i.e.characters attached to the beginning or end of names) to 

indicate the sort of action the word has. The word STOCK?, for instance, 

ends with a question mark to indicate that it is expected to retrieve some 

information. 

Although Forth programmers share some similar conventions in terms 

of word names - at least as regards their general type of function - in the 

final analysis it is largely a question of personal preference and con¬ 

venience. It is well worthwhile developing a consistent general approach to 

the naming of programs for your own applications. 

Throughout this book you will find references to standard naming 

conventions for particular types of Forth word. You should try to inte¬ 

grate these into your own system, since even if nobody else is likely to read 

your programs it will help you to understand other people’s source 

listings. 
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6.1 The if...else...then structure 

One of the most vital facilities in any programming language is the ability 
to make decisions so that appropriate actions can be performed in a variety 
of different circumstances. Forth provides a particularly elegant structure 
in this respect. Three separate Forth words are involved, if, else and 
then. Each time an IF is used it must be matched by a then, whilst the 
ELSE is optional. They can thus be used in the following ways: 

(condition) IF (code executed only if condition true) THEN 

(condition) if (code executed only if condition true) 
ELSE (code executed only if condition false) 
THEN 

Note that the layout of the second example is for cosmetic purposes only 
(Forth never minds how programs are laid out as long as the words are in 
the right order). The word if expects a number on the stack which it 
interprets as a flag. The flag is deemed true if it is not zero and false 
otherwise. To investigate how this works first define the following 

programs: 

: .TRUE CR TRUE CODE EXECUTED” ; 
: .FALSE CR .” FALSE CODE EXECUTED” ; 

The dot prefix is to indicate that these words print out something to the 
screen. Now define the following word to inform you of the decision made 

by if: 

: FLAG? ( f~) IF .TRUE 
ELSE .FALSE 
THEN ; 

Try passing a selection of values to this word as in the examples below: 
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1 FLAG? <RETURN> 

0 FLAG? <RETURN> 

3 FLAG? <RETURN> 

-1 FLAG? <RETURN> 

1000 FLAG? <RETURN> 

It should be clear that the only time that flag? prints out ‘FALSE CODE 
EXECUTED’ is when it finds a zero on the top of the stack. Under all 
other circumstances it prints ‘TRUE CODE EXECUTED’. Note that 
only the code between the if and the then is affected by the decision. This 
can be illustrated by feeding a similar selection of values to the following 

program: 

: FLOW ( f —) CR BEFORE IF" 

IF CR BETWEEN IF AND ELSE" 

ELSE CR ." BETWEEN ELSE AND THEN" 

THEN CR ." AFTER THEN" ; 

It cannot be stressed enough that whenever if is used it must find a 
subsequent then in the same definition, else is optional but can only be 
used once between each if...then pair. If you try to use any of these 
words without regard for these rules the offending program will either fail 
to compile or simply not work. 

Words introduced in this section: 

IF...ELSE...THEN ( f-) 

If the flag on the stack is non-zero at IF execution proceeds as normal to the 
ELSE (or THEN in the absence of an ELSE) and the code between ELSE and 
THEN is ignored. If the flag on the stack is zero the code between the IF and 
the ELSE is ignored and execution proceeds from after the ELSE. In both 
cases any code after the THEN is executed as normal. 
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6.2 Using flags 

Before we look more closely at how flags are generated the idea warrants 
some further discussion. Interpreting numbers on the stack as flags is 
commrnon to many Forth words. Although any non-zero value will be 
treated as true the label is meant to refer to a 1 as opposed to a 0. All the 
words which perform comparisons introduced in the next section leave 
one of these two values on the stack. Despite this, with a little care any 
number can be used as a flag and you will find various examples through¬ 
out this book of how to take full advantage of Forth decision making. 

It is worth pointing out at this stage that the word IF does not care how a 
flag gets onto the stack, just as long as it is there. In order to make the flow 
of your programs easier to follow, however, it is best to include the coding 
which produces a flag (i.e. the condition) in the same program as its 
consequences. Similarly, if extensive coding is to be used between IF, else 

and THEN it should be defined as a separate word, as in flag? above. 

6.3 Number comparison 

We have seen how the word IF expects a number on the stack which it 
treats as a flag. Clearly this would be very limiting if there were not 
convenient ways of making complex decisions. Forth provides a number 
of words to help with this under the general heading of ‘comparison’. 
Their actions are as follows: 

= ( n,n—f) 
Expects two numbers on the stack. Leaves a true flag if they are equal, 
otherwise leaves a false flag. 

< ( nl,n2—f) 
Less-than. Expects two numbers on the stack. Leaves a true flag if nl is 
less than n2, otherwise leaves a false flag. Note that it leaves a false flag if 
the two numbers are equal, also that it treats the numbers as signed 

integers. 

> ( nl,n2—f) 
Greater-than. Expects two numbers on the stack. Leaves a true flag if nl is 
greater than n2, otherwise leaves a false flag. Note that it leaves a false flag 
if the two numbers are equal, and that it treats the numbers as signed 

integers. 

u< ( nl,n2-f) 
U-less-than. Expects two numbers on the stack. Leaves a true flag if nl is 
less than n2, otherwise leaves a false flag. Note that it leaves a false flag if 
the two numbers are equal, and that it treats the numbers as unsigned 
integers and is hence used mainly for memory addresses. 
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0= ( n-f) 

Zero-equal. Expects one number on the stack. Leaves a true flag if it is 

zero, and a false flag otherwise. 

NOT ( f-f) 

Expects one number in the stack. Leaves a true flag if it is zero, and a false 

flag otherwise. Its action is exactly as 0= i.e. it reverses the truth value of 

the item on the stack. 

0< ( n-f) 

Zero-less-than. Expects one number on the stack. Leaves a true flag if it is 

negative, leaves a false flag if it is positive or zero. 

0> ( n-f) 

Zero-greater-than. Expects one number on the stack. Leaves a true flag if 

it is positive, leaves a false flag if it is negative or zero. 

The simplest of these is = which leaves a 1 if the two numbers on the 

stack are equal and otherwise a zero. Its action can be demonstrated either 

by simply typing examples in and printing the flag as in: 

13 2 = . <RETURN> 

5 5 = . <RETURN> 

or by using the following simple program: 

: EQUAL? ( n,n—) = IF CR NUMBERS ARE EQUAL" 

ELSE CR NUMBERS ARE NOT EQUAL" 

THEN ; 

12 3 EQUAL? <RETURN> 

2 2 EQUAL? <RETURN> 

The operator = is often used with a constant to determine when some 

predefined condition has occurred. Suppose you were organizing a rock 

concert and the venue could only hold 500 people. To keep track of the 

number of fans arriving the word 1FAN is defined to add one to a variable 

used as a count: 

VARIABLE (FANS) 

: 1FAN 1 (FANS) +! ; 

Using a constant for the maximum capacity of the venue, a word can be 

created to issue a message when the hall is full: 
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500 CONSTANT MAXFANS 

: FULL? (FANS) @ MAXFANS = 

IF CR FULL HOUSE !” THEN ; 

These definitions can then be combined to produce a word to be keyed in 

each time somebody walks through the door: 

: FAN 1FAN FULL? ; 

To test this word you should initialize the variable (fans) to about 495 

before you start keying in FAN - otherwise you’ll have to do it 500 times! 

It would be much more convenient if we could check in more than one 

arrival at a time, since people tend to arrive at such events in groups. To 

increment the head count in (fans) the following simple program can be 

used: 

: +FANS ( n~) (FANS) ’ + ! ; 

If this were used the value of (fans) might never be exactly equal to 500, 

since a group of 5 might arrive when it was set at 498 giving a total of 503. 

In order to avoid overcrowding we must therefore check that the value in 

(FANS) does not exceed the maximum capacity; and this must be done 

before the new arrivals are allowed to enter. We can use @ for this: 

: CHECK-SPACE (FANS) @ MAXFANS > 

IF.” NO ROOM” THEN ; 

: FANS ( n~) +FANS CHECK-SPACE ; 

You should try developing some similar programs of your own to inves¬ 

tigate the actions of the other comparison words. Remember that all of 

them can be entered interactively, and as long as you take care to set up 

the appropriate numbers on the stack their activity can very easily be 

investigated. 

Words introduced in this section: 

= ( n,n~f) 
Expects two numbers on the stack. Leaves a true flag if they are equal, 

otherwise leaves a false flag. 

< ( nl,n2—f) 

Less-than. Expects two numbers on the stack. Leaves a true flag if nl is 

less than n2, otherwise leaves a false flag. Note that it leaves a false flag if 

the two numbers are equal, and that it treats the numbers as signed 

integers. 

> ( nl,n2-f) 

Greater-than. Expects two numbers on the stack. Leaves a true flag if nl is 
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greater than n2, otherwise leaves a false flag. Note that it leaves a false flag 

if the two numbers are equal, and that it treats the numbers as signed 

integers. 

u< ( nl,n2—f) 

U-less-than. Expects two numbers on the stack. Leaves a true flag if nl is 

less than n2, otherwise leaves a false flag. Note that it leaves a false flag if 

the two numbers are equal, and that it treats the numbers as unsigned 

integers and is hence used mainly for memory addresses. 

0= ( n-f) 

Zero-equal. Expects one number on the stack. Leaves a true flag if it is 

zero, and a false flag otherwise. 

NOT ( f~f) 

Expects one number in the stack. Leaves a true flag if it is zero, and a false 

flag otherwise. Its action is exactly as 0= i.e. it reverses the truth value of 

the item on the stack. 

0< ( n—f) 

Zero-less-than. Expects one number on the stack. Leaves a true flag if it is 

negative, leaves a false flag if it is positive or zero. 

0> ( n-f) 

Zero-greater-than. Expects one number on the stack. Leaves a true flag if 

it is positive, leaves a false flag if it is negative or zero. 

6.4 Logical operators 

Forth provides three more words which are frequently used in conjunction 

with IF...ELSE...THEN. These are called logical operators, and they effec¬ 

tively combine the results of two related comparisons into a single flag. 

The relevant words are AND, OR and XOR. All of these expect two flags on 

the stack, which they replace with a single flag. Because of the way they 

work it is important that they should only be used with genuine flags (i.e. 

1 or 0), otherwise they will give unpredictable results. The reason for this 

will be discussed further, with examples, in Chapter 8. 

The operation of each of these words on the possible combinations of 

flags is illustrated by keying in the following phrases: 

0 0 AND . <RETURN> 0 ok 

0 1 AND . <RETURN> 0 ok 

1 0 AND . <RETURN> 0 ok 
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1 1 AND . <RETURN> 1 ok 

0 0 OR . <RETURN> 0 ok 

0 1 OR . <RETURN> 1 ok 

1 0 OR . <RETURN> 1 ok 

1 1 OR . <RETURN> 1 ok 

0 0 XOR . <RETURN> 0 ok 

0 1 XOR . <RETURN> 1 ok 

1 0 XOR . <RETURN> 1 ok 

1 1 XOR . <RETURN> 0 ok 

You will find numerous examples of the use of logical operators through¬ 

out this book, since and and OR particularly are amongst the most com¬ 

monly used Forth words. 

Words introduced in this section: 

AND ( fjf-f) 

Expects two numbers on the stack. Returns true if both numbers are true, 

and false otherwise. 

OR ( f,f—f) 

Expects two numbers on the stack. Returns true if either or both of them 

are true, and false only if both are false. 

XOR ( f,f—f) 

Exclusive-or. Expects two numbers on the stack. Returns true if only one 

of these is true, and false if both are true or both are false. 
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7,1 Stack manipulation 

It has been shown that all Forth words communicate via the stack. All 

parameters are found on the stack and all results returned there. It often 

happens that we require the same parameters for more than one word 

within a single outer program. Consider the following little routine which 

accepts a 10 character input from the keyboard and echos it back to the 

screen. 

: ECHO ( — ) PAD 10 BLANK 

PAD 10 EXPECT 

SPACE 

PAD 10 TYPE ; 

The values pad and 10 are used thrice within the confines of a single 

program to specify the string address. Now suppose we wish to modify the 

behaviour of ECHO so that we may vary the length of the string by leaving 

the desired length on the stack. The first problem is that we must 

somehow get the value PAD ‘under’ the count value within ECHO. This 

could be achieved by using a variable to hold the count value while we are 

working. 

VARIABLE CHARS ( Character count ) 

: ECHO ( n —- ) CHARS ! 

PAD CHARS 3 BLANK 

PAD CHARS 3 EXPECT 

SPACE 

PAD CHARS 3 TYPE ; 

This is a perfectly acceptable method, particularly if the phrase PAD CHARS 

@ is factored out into a separate word: 
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: STRING ( addr,ct —) PAD CHARS 3 ; 

: ECHO C n — ) CHARS ! 

STRING BLANK 

STRING EXPECT 

SPACE 

STRING TYPE ; 

The first action of ECHO is to store its parameter thus removing it from the 

stack. Only moments later, however, it it is retrieved by string for blank 

to use. This is not particularly efficient. Forth simplifies the use of the 

stack by providing a set of routines which allows us to conserve stack 

values and generally to juggle with them. These routines collectively 

known as the ‘stack operators’ are particularly speedy and efficient. 

Mastery of their use is essential to practical Forth programming. 

The actual operation of the stack operators is meaningless outside the 

context of the programs in which they are used and some will not be 

required until later in the book. They are given here along with their 

effects on the stack followed by a few short examples of their use, and you 

should completely familiarize yourself with their action by experimenting 

at the keyboard and studying the examples since no further explanation 

will be given. To assist in this you should make use of the word .S if it is 

present on your system. This will print all the values on the stack without 

removing any of them. If this useful word is not present you can use the 

definition in Chapter 9. Edit it onto a block, save it, then load it and check 

its correct operation with the following sequence: 

. <RETURN> 

Do this repeatedly until the system issues a ’’stack empty” message then 

key in: 

.S <RETURN> Stack empty ok 

4321 .S <RETURN> 4 3 2 1 ok 

.S <RETURN> 4 3 2 1 ok 

. <RETURN> 1 ok 

.S <RETURN> 4 3 2 ok 

Any departure from this behaviour means that .S is not working correctly 

so your source code should be carefully checked against that in the book 

and any differences corrected before reloading the block. Remember to 
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clear the stack when you are sure .s is working. Once .s is working 
correctly it should be used whenever you wish to know the current state of 
the stack, and may be edited into the sample programs so that their 
mechanisms may be observed. 

All Forth systems include the following stack operators: 

Stack before Name Stack after Action 

n— DUP —n,n Duplicates the top stack 
value. 

n— DROP — Discards the top stack 
value. 

nl,n2— SWAP —n2,nl Exchanges the top two 
values. 

nl,n2— OVER —nl,n2,nl Copies the second value to 
the top. 

nl,n2,n3— ROT —n2,n3,nl Rotates the third value to 
the top. 

Consider how these could be used in place of the variable chars in the 

execution of echo: 

: ECHO ( n-) PAD ( n,addi—) 

SWAP ( addr,n—) 

OVER ( addr,n,addi—) 

OVER ( addr,n,addr,n—) 

BLANK ( addr,n—) 

OVER ( addr,n,addr-) 

OVER ( addr,n,addr,n-) 

EXPECT ( addr,n-) 

SPACE TYPE ; 

Having set up the parameters in the correct order with pad swap the 

phrase over over is used prior to the first two string operations so as 

conserve them for later use. The need to duplicate the top two stack values 

occurs so frequently that it is worthwhile defining a new stack operator for 

this very purpose. Some systems come already equipped with the word 

2DUP, which may be defined: 

: 2DUP ( n 1 ,n2-n 1 ,n2 ,nl ,n2) OVER OVER ; 

This may now be used to simplify the definition of echo as follows. 
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: ECHO ( n-) PAD SWAP 

2DUP BLANK 

2DUP EXPECT 

SPACE TYPE ; 

Words introduced in this section: 

DUP ( n—n,n) 
Duplicates the top stack value. 

drop ( n—) 

Discards the top stack value. 

swap ( nl,n2—n2,nl) 

Exchanges the top two values. 

over ( nl,n2—nl,n2,nl) 

Copies the second stack item to the top. 

rot ( nl,n2,n3—n2,n3,nl) 
Rotates the third stack item to the top. 

2DUP ( nl,n2—nl,n2,nl,n2) 
Duplicates the top two stack items. 

•s (—) 
Prints out all numbers on the stack without affecting it. 

7.2 The stack and arithmetic 

The stack operators described in the previous section are used extensively 
in conjunction with the arithmetic operators to perform calculations 
according to mathematical formulae. The following routines will illustrate 
some of the basic concepts. Among the first examples of stack use given in 
many introductory texts is a routine to produce the square of a given 
number. The number must be multiplied by itself so it is appropriate to 
use dup to generate the correct parameters for * to produce the square. 
Below are three simple examples of using DUP to produce useful arith¬ 

metic results. 

: SQUARED ( n-n*n) DUP * ; 

: CUBED ( n-n*n*n) DUP DUP * * ; 

: 2* ( n —-2n) DUP + ; 

The word 2* is extremely useful in Forth programming particularly when 
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calculating addresses and is often a resident part of the system. If it is not 

then the definition above is the simplest, whereby the number is doubled 

by adding it to itself. 

A simple use of the routines squared and cubed is to calculate the 

volume and surface area of a cube given the length of its sides: 

VARIABLE SIDE 

6 CONSTANT FACES 

: INCHES ( n—) SIDE ! ; 

: AREA ( —n) SIDE 3 SQUARED ; 

: VOLUME ( —n) SIDE 3 CUBED ; 

: SURFACE ( —n) AREA FACES * ; 

The variable side is used to hold the length of a side. In this case the units 

of length are assumed to be in inches, but any other unit will do just as 

well. The value of side is set by INCHES so that: 

10 INCHES <RETURN> ok 

means we are dealing with a 10 inch cube. The statistics for the cube may 

now be obtained by keying in: 

VOLUME . SURFACE . <RETURN> 1000 600 ok 

The cube has a volume of 1000 cubic inches and a total suface area of 600 

square inches. The area of any one face of the cube is produced by area 

which is then multiplied by the number of faces in a cube (6) defined as the 

constant FACES. Try out these routines for different sizes of cube using 

INCHES. They have the following limitations: when SIDE is set to values 

greater than 40 the operation of VOLUME breaks down since a 16-bit 

number is too small to hold the result of cubing a number greater than 

this: 

40 INCHES VOLUME U. <RETURN> 64000 ok 

41 INCHES VOLUME U. <RETURN> 3385 ok 

The result given for a 40 inch side falls just within the range of an 

unsigned 16-bit number (max 65535), and adding just one unit to the side 

length pushes the cubed result completely out of range. The operation of 

SURFACE breaks down more slowly since we are only squaring and multip¬ 

lying by 6. The limiting value for side is in this case 104 inches. 
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104 INCHES SURFACE U. <RETURN> 64986 ok 

105 INCHES SURFACE U. <RETURN> 614 ok 

A further limitation is that a negative value fed to INCHES will make a 

complete nonesense of volume, but then cubes never have negative side 

lengths! 
One thing these routines demonstrate is the variety of different ways by 

which we perform long term and short term storage. The stack is used to 

hold values for short periods while they are required for calculations. Thus 

CUBED keeps the initial value on the stack while the square is produced and 

then multiplies these two values to produce the final result. In other 

instances a word may hold a value on the stack for even longer periods, but 

always within the confines of a single definition. When INCHES is used to 

set up sides, the value is for long term storage, since we may wish to use it 

for a number of purposes over an indefinite period. The value is held in 

SIDE until we change it again by using INCHES. The stack is far too busy a 

place to be used for long term storage which will carry across the execution 

of more than one outer level word. 

7.3 Looking at the stack in more depth 

In addition to the stack operators mentioned your system may include the 

following: 

DEPTH ( —n) 
Returns to the top of the stack the total number of values on the stack 

prior to its own execution. 

PICK ( n—) 
Copies to the top of the stack the nth value down, such that 2 PICK is 

equivalent to over. 

roll ( n—) 
Removes the nth stack value from its position in the stack and returns it to 

the top. All other values are effectively pushed down so that 3 ROLL per¬ 

forms the same action as ROT. 

The words pick and ROLL are limited in their uses, since the stack is 

normally kept as small as possible. They should operate in the following 

manner. 

54321 .S <RETURN> 5 4 3 2 1 ok 

5 ROLL -S <RETURN> 4 3 2 1 5 ok 

5 ROLL -S <RETURN> 3 2 1 5 4 ok 
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3 PICK .S <RETURN> 3 2 1 5 4 1 ok 

3 PICK .S <RETURN> 3 2 1 5 4 1 5 ok 

The word depth is, however, a very useful debugging tool, giving an 
absolute measure of the stack depth. It has been used in the definition of .s 
to determine how many items are to be printed. The action of depth may 
be observed using the following sequence of commands after first clearing 
the stack: 

DEPTH .S <RETURN> 0 ok 

DEPTH .S <RETURN> 0 1 ok 

DEPTH .S <RETURN> 0 1 2 ok 

DEPTH .S <RETURN> 0 1 2 3 ok 

DEPTH .S <RETURN> 0 1 2 3 4 ok 

The Forth word drop is used to remove unwanted values from the stack. 
Its only function is to increment the stack pointer by two so that the top 
item is effectively lost. There are a number of regularly occurring instan¬ 
ces when this is required. One of the most common being inside the 
conditional structure if...else...then encountered in the last chapter. As 
a simple example of this the definition of inches from the previous section 
may be changed so as to include a check to ensure that a valid result will be 
produced by volume: 

: INCHES ( n-) DUP 41 < 

OVER 0> AND 

IF SIDE ! 

ELSE DROP Side length out of range" 

THEN ; 

The value given to inches is first tested non-destructively to ensure it falls 
in the range 1-40 inclusive, as values outside this range will not yield 
meaningful results. The value is only stored in side if it is greater than 
zero and less than 41. The conditional flag is generated for the if by the 
first two lines of code. The effects on the stack are: 
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Operation Stack effect 

—n 

DUP 41 < —n,f 

OVER 0> —n,f,f 

AND —n,f 

The word 0> is a 79-Standard comparison and may be substituted by 0 > if 

required. If the resultant flag is false the value is not required for storage 

and so a drop is executed in the else ‘clause’ of inches prior to issuing an 

error message. Note that it is assumed that the word inches will only be 

used from the keyboard, rather than in other programs. More generally, 

the else clause would include the word abort following the message 

rather than DROP since ABORT clears the stack and returns control to the 

keyboard immediately. 
Checking whether a value falls within some range of values is a very 

common operation in computer programming and some Forth imple¬ 

mentations include an additional conditional test specifically for this pur¬ 

pose. The word is within which takes three parameters; the value to be 

tested as third stack parameter, the lower limit of the range as second, and 

the upper limit plus 1 as the top. If you already have a WITHIN on your 

system it should operate as follows: 

20 20 30 WITHIN . <RETURN> 1 ok 

19 20 30 WITHIN . <RETURN> 0 ok 

29 20 30 WITHIN . <RETURN> 1 ok 

30 20 30 WITHIN <RETURN> 0 ok 

If you do not have a resident WITHIN then the following definition is not 

only a useful addition to the Forth vocabulary, but it is also a classic 

example of the short term use of the stack in conjunction with com¬ 

parisons and a logical operation. 

: WITHIN ( n,lo,hi+1-f) ROT SWAP 

OVER > 

ROT ROT > 0= 

AND ; 

To fall within range the value must be greater than or equal to the lower 

limit or, seen another way, the lower limit of the range must not be greater 

than the value. The condition is generated in this form using the word 0= 
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to reverse the truth value of the flag so as to read true if the lower limit is 

not greater. Some systems include the word not to do this, its action 

being identical to 0=. WITHIN may now be used to simplify the code for 

INCHES by making the following additions to the source block and 

reloading. 

: RANGE ( —Lo hi+1) 0 41 ; 

: INCHES ( n —) DUP RANGE WITHIN 

IF SIDE ! 

ELSE DROP Side length out of range" 

THEN ; 

The action of INCHES is now much more apparent from reading the 

source code, since most of the stack manipulation has been removed to a 

lower level program (within). It is also very easy to adjust the check to 

operate on a different valid range simply by altering RANGE. It should be 

noted that during the execution of within inside the definition of inches 

the stack reaches a maximum depth of five items (immediately following 

OVER), but that as far as INCHES is concerned only four items ever appear 

at one time - immediately following range. The actions of the lower 

level words are transparent to the words which use them; only the before 

and after stack conditions are significant. 

We frequently require that a word should process a value only if it is 

non-zero. This leads to the use of a structure of the general form: 

: ACTION ( n—) DUP IF PROCESS ELSE DROP THEN : 

To overcome the need to employ an else clause containing only a DROP 

many Forth systems include the stack operation ?dup (-DUP in Fig-Forth) 

which duplicates the top stack item only if if is non-zero. This simplifies 

the code for the imaginary program action: 

: ACTION ( n—) ?DUP IF PROCESS TPIEN ; 

Numerous examples of this technique will be encountered in this book, 

particularly when dealing with controlled repetition. A simple definition 

of ?DUP is: 

: ?DUP ( n—n/n,n) DUP IF DUP THEN ; 

Words introduced in this section: 

DEPTH ( —n) 

Returns the total number of values on the stack prior to execution. 
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pick ( n—) 
Copies nth value to the top of the stack, such that 2 pick is equivalent to 

OVER. 

ROLL ( n—) 

Removes the nth stack value from its position and returns it to the top. All 

other values are effectively pushed down so that 3 ROLL performs the same 

action as rot. 

WITHIN ( n,lo,hi+1—f) 

Leaves true if the number n falls between lo and hi value inclusive, 

otherwise leaves false. 

?dup ( n—n/n,n) 

Duplicate the top stack item only if it is not zero. 

-dup ( n—n/n,n) 

FIG Forth only. Action is same as ?dup above. 

7.4 The stack versus variables - a short application 

As a result of Forth’s heavy use of the stack for parameter passing and the 

efficiency with which the stack operators execute, it is easy for the begin¬ 

ner to run away with the idea that the stack operators should be employed 

at every opportunity. This is not the case, the key to good Forth pro¬ 

gramming being structure and simplicity of coding achieved through 

correct analysis of the problem. Part of the beauty of Forth programs is 

the ease with which they can be maintained and adapted to cope with new 

circumstances, due to their extreme modularity. A major factor in pro¬ 

gram maintenance is the readability of the code and this is certainly not 

helped by massive clusters of stack operators. The use of named variables, 

whilst consuming more dictionary space and executing more slowly, leads 

to far more readable source code and often to a better factored and 

ultimately more efficient application. This becomes ever more significant 

the larger the application. In general the bulk of the stack juggling is 

relegated to a few frequently-used low level words at the heart of the 

application, the higher level words reading as near to the programmer’s 

native language as possible. The following short application illustrates 

how' most of the facets of Forth covered so far may be combined. 

Application 

Our fluffy toy company produces cardboard boxes for packaging by 

cutting templates in the pattern shown in diagram 7.1 from a flat sheet, 

then folding and glueing up the duplicate faces. 



Using the stack 97 

1 Front 
7777 

SIDE Top SIDE 

Rear 

Glue Bottom Glue 

sss. 
Glue H 

t 
length 

1 
♦ 

-Width - •height*- 

Diagram 7.1. Box template 

Batches of different sized boxes must be made and suitable sized sheets 
ordered as a starting material. In an attempt to optimize production the 
proprietor decides to write a cardboard-box modelling program for his 
microcomputer. Consider how this might be approached using Forth as a 
development medium. The programs will allow experimentation with the 
dimensions of boxes and sheets so as to find ways of minimizing wastage 
and determine what materials will be required. The application should 
also be sufficiently open ended to allow for new functions to be added in 
the future if required. It will be driven through a set of English language 
commands issued from the keyboard. 

Key commands: 

HIGH ( n—) 

Specify the height of the box. 

wide ( n—) 
Specify the width of the box. 

LONG ( n—) 

Specify the length of the box. 

SIZE ( long,wide—) 
Specify the sheet size. 
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TRY ( —) 

Test whether a defined box fits on a sheet. If it does the box statistics are 

printed out, otherwise an appropriate message is issued. 

MATERIALS ( —) 

Print out the number of boxes which can be made from a single sheet, the 

amount of cardboard used and the total cardboard wastage. 

MAKE ( n—) 
Specify the number of boxes in a batch. 

REQUIRED ( —) 

Print out the number of sheets required to produce a batch. 

As far as the calculations are concerned the problems to be solved are 

similar to those of the CUBE programs. The total volume enclosed by the 

box may be calculated from: 

Volume = length * breadth * height 

The total surface area of the completed box can be obtained via the areas of 

the individual named faces: 

Surface = (Top + End + Side) * 2 

where: 

Top = length * breadth 

Side = length * height 

End = breadth * height 

The total number of box templates obtainable from a single sheet may be 

computed using the number which fit across and the number which fit 

down the length: 

Boxes = no.across * no.down 

where: 

no.across = sheet width / template width 

no.down = sheet length / template length 

and: 

template width = (breadth + height) * 2 

template length = (length * 2) + (height * 3) 

We will use the same principle of setting variables to specify the dimen¬ 

sions of the final box and the starting sheet as was used in the CUBE 

programs, where side was set by inches. 



( Specify box dimensions ) 

VARIABLE HEIGHT 

VARIABLE BREADTH 

VARIABLE LENGTH 

: HIGH ( n—) HEIGHT ! ; 

: WIDE ( n—) BREADTH ! ; 

: LONG ( n—) LENGTH ! ; 

( Specify sheet size ) 

VARIABLE SHEET 0 , 

: SIZE ( Len,wide-) SHEET ROT OVER ! 2+ 

: AVAILABLE ( —n) SHEET DUP 2+ 3 SWAP 3 

( Compute Box statistics ) 

: TOP ( —-n) LENGTH 3 BREADTH 3 * ; 

: END ( n) HEIGHT 3 BREADTH 3 * ; 

: SIDE C —n) LENGTH 3 HEIGHT 3 * ; 

: VOLUME ( —n) TOP HEIGHT 3 * ; 

: SURFACE ( —n) TOP END SIDE + + 2* ; 

: GLUED ( —n) SIDE 2* END + ; 
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: WASTE ( —n) HEIGHT 3 SQUARED FACES * ; 

: USED ( -n) SURFACE WASTE SIDE + + ; 

The words used to specify the box dimensions should be self-explanatory. 
In order to avoid a collision of names the sheet size has been treated 
slightly differently. The variable sheet is used to compile the name and 
allocate one cell of storage which is to hold the sheet length. An extra cell 
is reserved for the width and initialized to zero by the phrase 0 , immedi¬ 
ately following the definition of sheet. The Forth word , (‘comma’) takes 
one value from the stack, stores it in the next available cell in the dic¬ 
tionary (as returned by HERE) and increments the contents of the top of the 
dictionary pointer (in H or dp) by 2. Try keying in: 

HERE DUP U. 0 , @ U. HERE U. <RETURN> 

The overall effect is to create a ‘double length’ variable called sheet. This 
is set for different sized sheets by size which requires two stack para¬ 
meters; the length and width. The word available returns the total area 
of cardboard available on a single sheet. 

The areas of the named faces are returned by top, side, and end and 
these are used in the definition of surface to generate the total surface of 
the box according to the formula given above. Defining these words prior 
to the definition of volume gives us a small bonus, since the word top 

does part of the necessary work and must only be multiplied by the 
contents of height to give the desired result. This leads to a simpler 
definition than: 

: VOLUME ( —n) LENGTH @ BREADTH @ HEIGHT @ * * ; 

which would have been used otherwise. The total cardboard consumed for 
each box made is calculated by used, which adds the surface area of the 
box, the area of duplicate faces to be glued (two sides and an end), and the 
waste cardboard in the form of the square offcuts. The words waste and 
GLUED return these latter two values. 

( Materials used ) 

: ACROSS ( ---n) SHEET 2+ 3 BREADTH 3 HEIGHT 32*+/; 

: DOWN ( —n) SHEET 3 LENGTH 3 2* HEIGHT 3 DUP 

2* + + / ; 
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: MAKES ( —n) ACROSS DOWN * ; 

: SCRAP ( —n) AVAILABLE MAKES USED * - ; 

across and down return the number of templates which will fit across and 

down a sheet, respectively. They perform their calculations according to 

the formula given. The width of a template is returned by the phrase: 

BREADTH @ HEIGHT @ 2* + 

The length of the template (twice the length plus three times the height) is 

calculated as: 

Template length = height + (height + length) * 2 

by the phrase: 

HEIGHT @ LENGTH @ OVER 2* + 

The word makes returns the total number of boxes per sheet. This enables 

the total scrap cardboard per sheet to be determined by multiplying the 

number of boxes per sheet by the cardboard used per box and subtracting 

from the total cardboard available on a sheet, scrap performs this task. 

Although all these results may be output using u. the results can be 

presented in a much more polished form by defining a few output words. 

( Display box dimensions ) 

: .DIM ( adai-) 3 U. .” inches " ; 

: .LENGTH ( —-) LENGTH .DIM ." Long, " ; 

: .HEIGHT ( —) HEIGHT .DIM ." high " ; 

: .WIDTH ( —) BREADTH .DIM ." wide " ; 

: .VOLUME ( —-) VOLUME U. ." cubic inches. " ; 

: .BOX ( -) CR ." The final box will be " 

.LENGTH .WIDTH ." and " .HEIGHT CR 

." The volume contained will be " .VOLUME ; 
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The phrase @ u. inches ” has been factored out into the word .dim since 

it occurs in each of the dimension display words. This is largely a space 

saving move, preventing the message ‘inches’ being compiled three times 

over. The important box statistics are displayed by .BOX in a descriptive 

manner. 

In order to try boxes for size and give the appropriate output we must 

include some conditional tests in the definition of the key command try. 

One will be to determine whether such a box can be cut from a given 

sheet, and - since if any of the box dimensions are zero the results will be 

absurd - a further test to ensure that all three dimensions have been 

specified. 

( Try box for size ) 

: FITS ( —f) ACROSS 0= DOWN 0= OR NOT ; 

: EXISTS ( —f) LENGTH a 0= BREADTH a 0= HEIGHT 

8 0= OR OR 

NOT ; 

: TRY ( — ) EXISTS 

IF FITS 

IF .BOX 

ELSE CR This box will not fit on a sheet " 

THEN 

ELSE CR ALL three dimensions must be specified " 

THEN ; 

The conditional test EXISTS returns true if none of the box dimensions 

contains a zero value. FITS returns true if at least one box can be cut from a 

sheet. TRY first tests to see if the box exists, and if it does not informs the 

user that all the box dimensions must be specified for the programs to 

work, otherwise the box is tested for a fit. If it fits then the box statistics 

are printed out by .BOX, or else the user is informed that the box will not fit 

this sized sheet. 

The key command MATERIALS must output cardboard usage; the 

number of boxes per sheet, the total cardboard employed and the total 

scrap produced. 
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( Display material requirement ) 

: .SHEET ( ---) SHEET DUP 2+ 3 U. by " 8 U. ; 

: .MAKES ( -) MAKES U. ." boxes may be made per " 

.SHEET ." inch sheet " ; 

: .USED (  ) ." Each box consumes " USED U. 

." square inches of scrap per sheet. " ; 

: .SCRAP ." This leaves " SCRAP U. ." square inches 

of scrap per sheet. " ; 

: MATERIALS ( —) CR .MAKES CR .USED CR .SCRAP ; 

The only word here which requires explanation is .SHEET, which displays 

the current sheet size being tested. 

Finally, make and required may be defined to specify the number of 

boxes in a batch and output the number of sheets required for a batch. 

( Batches ) 

VARIABLE MADE 

: MAKE ( n—) MADE ! ; 

: SHEETS ( —n) MADE 3 MAKES / ; 

: REQUIRED ( —) CR SHEETS U. .SHEET 

." inch sheets are required. " ; 

Again a variable, MADE, is used to facilitate experimentation. It holds the 

number of boxes in a batch and is set by the key command made. The 

number of sheets required is this number divided by the number of boxes 

per sheet - MAKES. 
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It should be remembered that the above application is subject to the 

same restrictions on the range of values over which it can successfully 

operate as were the cube programs. In this case, though, it is more 

complex to trap this since the calculations involve many more independent 

variables. Simple tests to exclude negative numbers could be included in 

each of the words: high, wide, long, size and make. This has not been 

done here for the sake of clarity. Methods of extending the effective range 

of numeric processing are discussed in the next chapter. 

Words introduced in this section: 

H ( —addr) 

Used on some systems as a variable containing the address of the top of the 

dictionary i.e.the value given by here. 

dp ( —addr) 

Used on some systems as a variable containing the address of the top of the 

dictionary, i.e. the value given by here. 

, ( n—) 
Compiles the number n into the next available cell in the dictionary and 

increments the dictionary pointer. 



8 Numbers and 
arithmetic 

8.1 Number bases 

Any number is written down as a sequence of digits, the number 100 has 
three, 10,000 has five. In everyday life we use a decimal system of 
numbering, by which we mean that each of the digits in a number can take 
on any one of 10 different values, i.e. 012345678 or 9. A computer 
works with a binary numbering system where each digit may take on one 
of only two different values, 0 or 1 (low or high, off or on). The number of 
values available for a digit in any given numbering system is called the 
base of the system. Ordinarily, in decimal we are working to base 10, 
whilst the computer is working to base 2. In practice we may work to any 
base we choose, although a relatively small selection are in common use. 

To observe the effects of changing the number base let us return to 
digital counters as used in Chapter 4. The example used was a binary 
counter illustrating how numbers are held in binary form. Consider now 
digital counters which work to the bases 4, 8 and 10. The results of 
successive increments on each of the counters are shown overleaf. 
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Base 4 Base 8 Base 10 

000 000 000 

001 001 001 

002 002 002 

003 003 003 

010 004 004 

011 005 005 

012 006 006 

013 007 007 

020 010 008 

021 011 009 

022 012 010 

023 013 011 

030 014 012 

031 015 013 

032 016 014 

033 017 015 

100 020 016 

333 

000 

777 

000 

The results show that by the time the decimal counter has reached 16, 

the base 8 and base 4 counters have reached 20 and 100 respectively. 

These are three radically different digit patterns, but since they were 

produced by exactly the same number of increments, the values they 

represent must be one and the same. The reason is that in each form of 

number a different significance or ‘weight’ is attached to the respective 

digits. 
The three counters are initially set to zero and for three counts all three 

show the same value. On the fourth however the base 4 counter has run 

out of room in the first digit, so this is reset to zero and the second digit 

incremented giving the number 10. Four counts later the same thing 

happens, this time giving 20, then after another four 30. The second digit 

of this counter is used to record the number of groups of four counts 

which have passed, and the first digit to record the single counts, so that 

23 in base 4 means two fours plus three singles which adds up to 11 

decimal (the value shown on the base 10 counter). Eventually the base 4 

counter reaches 33 and needs to employ a third digit on the next count. At 

this point a total of four groups of four counts have passed, so the third 
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digit is used to record the number of groups of 16 counts. Since this third 

digit can only count up to three, the highest number that the three digit 

counter can record is 333, which evaluates to: 

(3*16) + (3*4) + 3 = 63 

On the 64th count it goes round the clock to give zero. Similar things 

happen with the base 8 and base 10 counters. In each case the true value of 

the second digit is obtained by multipying the digit by the base. The third 

digit must be multiplied by the base twice. Thus on the base 10 counter 

the three digits represent ones, tens and hundreds, while on the base 8 

version they represent ones, eights, and sixty-fours. In each case the 

highest value any digit may attain is one less than the base of the number. 

In more general terms the weight attached to the various digits which 

compose a number is governed by the base as follows: 

Base n:- 

Digit. 4 3 2 1 0 

Weight.... *n(4) *n(3) *n! 2 ’ *n(D *n:° 

Number.. .. d4 d3 d2 dl d0 

Value = d4*nf4) + d3*n 3 5 + d2*n! 21 + dl*n + d0 

The rightmost digit of any number is always a record of units. Each 

successive digit to the left must be multiplied by the base one more times 

than its neighbour in order to obtain its true significance. The value 

represented by the whole number is the sum of all the digits each multi¬ 

plied by its weighting. 

You may well wonder why anyone should wish to operate in a base other 

than 10 since we deal so naturally with the decimal system. Whilst 

computers cannot help but work in binary, it would clearly be unreason¬ 

able to expect anyone to type in long strings of ones and zeros in order to 

communicate. Mostly we would like to be able to specify numbers in 

ordinary decimal format, and leave the computer to convert that string of 

characters to the equivalent binary number. This is exactly what Forth 

does when we type in a numeric string at the keyboard and a number is 

placed in binary form on the stack. The reverse conversion process takes 

place when we output a number using . or u. Then the top stack value is 

converted to an ASCII string representing the equivalent decimal number 

and this is typed out at the screen. The mechanisms by which these 

string/number conversions take place in input and output are discussed 

later. 

Although for the bulk of our processing we prefer to think of numbers 

in their decimal representations, there are occasions when the actual bit 

pattern is of interest. For example the ASCII codes returned by KEY for 
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the alphabetic characters in upper and lower case begin with 65 (A) and 97 

(a) and end with 90 (Z) and 122 (z). The binary representations for these 

codes are: 

A 01O00001 

a 01100001 

Z 01011010 

z 01111010 

The only difference between the upper and lower case characters is the 

state of bit 5, which tells us whether or not the shift key was pressed at the 

same time as the character key. Suppose we wish to write a routine which 

tests a character to see if it is upper or lower case. It will be used in the 

form: 

: TEST ( —> KEY CAPITAL 

IF Upper case " 

ELSE Lower case " 

THEN : 

There are two problems encountered in the coding of capital, which 

should return a true flag if the character left by key is upper case, 

otherwise false. First we need a method of testing an individual bit within 

a number to see whether it is a one or a zero, and secondly we need a 

method of specifying which bit to test. The solution to the first problem is 

provided by the logical operators and, or and xor. So far these have only 

been used to operate on values which are either 1 or 0, such as the results 

of the conditional tests. In fact the words act simultaneously on each bit of 

a 16-bit number so as to give the following results: 

1111111111111111 1010101010101010 and 

gives: 

1010101010101010 

1111111111111111 1010101010101010 OR 

gives 

1111111111111111 

1111111111111111 1010101010101010 xor 

gives: 

0101010101010101 
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This explains why only values which are either 1 or 0 should be combined 
by these operators if they are to be used by a conditional structure. 
Conditional structures in Forth treat all non-zero values as true, but only a 
zero as false. The difficulty arises when two true values are combined 
using AND or XOR if the values are other than 1. For example both four and 
eight are reasonable true values if used individually. If these true values 
are ANDed together however a false condition arises rather than the expec¬ 

ted true. 

8 0000000000001000 true 

4 0000000000000100 true 

ANDed gives: 

0 0000000000000000 false 

This is clearly a logical nonsense even though the bit-wise logic is correct. 

Similarly XORing the same two values results not in the expected false 

condition but in an erroneous true. 

8 0000000000001000 true 

4 0000000000000100 true 

XGRed gives: 

0 0000000000001100 true 

The logical operators thus provide us with a method of testing for upper 

and lower case, since if the ASCII value is ANDed with the binary number 

100000 all bits in the result will be set to 0 except bit 5. This will be zero 

only if it w'as zero in the original key code. The result of this operation will 

be either 0, if the character is upper case or 100000 binary for lower case. 

The desired logic condition for capital could then be generated using 0= 

to yield 1 for uppercase and 0 for lower case. 

All that is now required is a method of specifying the binary number 

100000 to the Forth compiler. One method wrould be to work out the 

decimal equivalent and use that in the definition. A better way would be if 

we could use the binary representation in the program, since it would be 

much clearer what the program was actually doing and would also save the 

trouble of performing the binary-to-decimal conversion ourselves. In 

Forth we may change the working base of the system by altering the 

contents of the variable BASE. The contents of BASE can be set to 10 by 

executing the word DECIMAL. This is the default condition for BASE 

adopted on start up. In order to have the Forth interpret binary numeric 

strings as numbers the contents of BASE must be set to two. This is best 

done by defining a word: 
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: BINARY(—) 2 BASE! ; 

If binary is executed Forth will no longer make any sense of decimal 

numbers, but it will convert strings of ones and zeros to binary numbers 

on the stack. It will also output all numbers from the stack in binary 

format. Try typing: 

DECIMAL 65 BINARY U. DECIMAL <RETURN> 01000001 ok 

We now have the tools necessary to construct the word capital and 

complete the definition of TEST. 

BINARY 

: CAPITAL ( char—f) 100000 AND 0= ; 

DECIMAL 

Note that the system base was returned to decimal as soon as it became 

unnecessary to have it work in binary. This is quite normal practice since 

leaving Forth in bases other than 10 can be very confusing. 

The decimal notation for numbers has the disadvantage that it is very 

difficult to envisage the bit pattern associated with that number, par¬ 

ticularly when 16-bits are involved. On the other hand binary notation is 

very long-winded and requires many more digits to express the number, 

consequently they are difficult for humans to remember. In order to reach 

a compromise between these two systems other number bases are 

employed. They are the octal base 8 and hexadecimal base 16 systems of 

numbering. These systems allow us to express numbers in a reasonably 

concise form without losing sight of the bit pattern which they represent. 

This is because unlike 10, both 8 and 16 are even powers of 2, which 

allows us to split up a long binary number into a group of smaller binary 

numbers and represent each of these with one digit in the octal or ‘hex’ 

number. As shown using the base 8 digital counter, each octal digit can 

represent any value between 0 and 7, and is therefore equivalent to 3 bits 

of a binary number. To convert a 16-bit binary number to its octal 

equivalent it is first split up into six 3-bit numbers starting from the right, 

the least significant. Each of these 3-bit numbers is then converted into 

one octal digit. Thus the binary value 1101011100111001 is converted as 

follows: 

binary xxl 101 011 100 111 001 

converts to 

octal 1 5 3 4 7 1 

Since the 16-bit number is divided up starting from the right, bit 15 forms 

a 3-bit number which may only take on values of 0 or 1. It is very much 

easier to relate an octal number to the associated bit pattern since we only 

need ever work with 3 bits at a time, the larger binary value being built up 
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by combining these. The octal number 146253 converts thus: 

octal 1 4 6 2 5 3 

converts to 

binary xxl 100 110 010 101 011 

Use of octal notation is most common when working with 12 or 24-bit 

numbers since these may be split into an exact number of three-bit groups. 

For 8, 16 and 32-bit work the hexadecimal system is used. Each digit in a 

hex number can assume any one of 16 values and may thus be used to 

represent a 4-bit binary number. In order to use hexadecimal digits some 

extra symbols are required to represent the values 10 to 15. 1 he alphabetic 

characters A-F are used for this purpose so that the values on a hex¬ 

adecimal counter would read as follows. 

Hex Decimal 

001 1 

002 2 

003 3 

009 9 

00A 10 

00B 11 

00F 15 

010 16 

01F 31 

020 32 

0FF 255 

100 256 

Conversion from binary to hex is much the same as for octal except that 

the binary value is split into groups of 4 bits, each of these representing 

one hex digit. 

binary 1001 

converts to 

hex 9 

1010 1111 0011 

A F 3 

hex C 

converts to 

binary 1100 

0 7 E 

0000 0111 1110 
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The hex system allows for a very concise notation, and 4-bit binary 

numbers are almost as easy to deal with as the 3-bit values used in octal. 

The Forth system can be set to input and output values in hexadecimal by 

setting the contents of BASE to 16 with the word HEX. Try: 

65535 HEX U. DECIMAL <RETURN> FFFF ok 

The largest possible 16-bit number is FFFF in hexadecimal. 

When experimenting with different number bases it is convenient to be 

able to display a number in a base other than the current working base. To 

do this the contents of BASE must be saved prior to altering it and restored 

after the output has been done. The routine .base allows us to specify the 

base in which the output will be performed. 

: .BASE ( n,base—) BASE SWAP OVER DUP 3 

ROT ROT ! 

ROT U. 

SWAP ! ; 

: .HEX ( n—) 16 .BASE ; 

: .DEC ( n—) 10 .BASE ; 

: .OCT ( n—-) 8 .BASE ; 

: .BIN ( n—) 2 .BASE ; 

These routines allow numbers to be displayed in all of the common bases 

without affecting the current working base. One use is if we wish to 

examine the contents of BASE itself to determine what the current base is. 

If this is attempted using: 

BASE ? <RETURN> 10 ok 

the result will be 10 no matter what base is set to, since 10 is 2 in binary, 

16 in hexadecimal, 8 in octal and so on. The correct way to display the 

contents of base is to use: 

BASE @ .DEC 
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which always displays it in decimal notation. Alternatively the nonsense 

word BASE? with its elaborate cascade of nested IF structures may be used. 

: BASE? ( —) BASE 3 DUP 10 = 

IF DROP decimal " 

ELSE DUP 16 = 

IF DROP hexadecimal " 

ELSE DUP 2 = 

IF DROP binary " 

ELSE DUP 8 = 

IF DROP octal " 

ELSE Base " . 

THEN 

THEN 

THEN 

THEN ; 

Words introduced in this section: 

base ( —addr) 

System variable containing the current number base. If examined with 

base ? will always print 10. 

DECIMAL ( —) 

Sets the system number base to decimal. 

HEX ( —) 

Sets the system number base to sixteen. 

8.2 Types of numbers 

We have seen how the binary numbers in memory can be interpreted in 

different ways by different Forth words. The type of number encountered 

so far have included signed and unsigned 16-bit numbers (usually referred 

to as single numbers) and 8-bit ASCII values (often called characters). It 

should be noted that 8-bit values still occupy 16-bit cells on the stack but 

the whole of the high order byte is set to zero. Before going on to discuss 

other types of number it is worth examining the operation of signed 

numbers more closely. 

A pair of binary numbers may be added together in the same way as a 

pair of decimal numbers. They are written out one beneath the other and 

successive digits are then added together in columns, starting from the 

right. If the sum of two digits results in a value that exceeds the capacity of 

a single digit then the overflow is carried forward and added into the next 
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column. Adding two binary values together is simpler than adding two 

decimal numbers since there are only three possible results from the sum 

of two bits. If both are 0 then a 0 results. If one is 0 and the other 1 then a 1 

results, and if both are 1 then a 0 results and a 1 is carried forward to be 

added in the next column. Should this carry mean that three l’s must be 

added together in the next column the the result will be 1 with a 1 carried. 

e.g. 10 2 10 2 111 7 

10 2 111 7 111 7 

100 4 1001 9 1110 14 

Microprocessors perform binary addition in a very similar manner using a 

carry mechanism. The use of a signed representation for a number allows 

the processor to use the same addition routines to perform subtraction 

since adding a negative number gives the same result as subtracting the 

equivalent positive value. We may use the Forth system to see how this is 

done with binary values. The definitions UP and DOWN are used to incre¬ 

ment and decrement a value by one and display the result non- 

destructively in binary format. 

: DOWN ( n— n-1) 1- DUP .BIN ; 

: UP ( n—- n+1) 1+ DUP .BIN ; 

Execute the sequence: 

0 <RETURN> 

DOWN <RETURN> 1111111111111111 

DOWN <RETURN> 1111111111111110 

DOWN <RETURN> 1111111111111101 

DOWN <RETURN> 1111111111111100 
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UP <RETURN> 1111111111111101 

UP <RETURN> 1111111111111110 

UP <RETURN> 1111111111111111 

UP <RETURN> 0 

UP <RETURN> 1 

The first three values obtained from using DOWN must clearly be equiva¬ 

lent to --1, -2, an -3. If we perform an addition using one of these values 

it should give the same result as the equivalent subtraction. 

e.g. 3 — 1 is the same as 3 -I— 1: 

0000000000000011 

1111111111111111 

10000000000000010 

The carry produced on adding the first digit pair is passed right though the 

number and finally appears in bit 16. Since there is no bit 16 in a single 

number this digit is effectively lost and the result is 0000000000000010 

(decimal 2) the ‘correct’ result. When a computer needs to perform a 

subtraction the first step is to ‘negate’ the number to be subtracted, it then 

adds the two values. 

A binary number is negated by a process called two’s complement. The 

value of each bit is inverted, all zeros becoming ones and all ones becom¬ 

ing zero. The two’s complement can then be obtained by adding one to the 

result. A bit-wise complement can be produced using the Forth word XOR. 

HEX 

: INVERT ( n—n) FFFF XOR ; 

DECIMAL 

Two’s complements may be produced and displayed in binary using 

show: 
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: SHOW ( n —) INVERT 1+ .BIN ; 

-1 SHOW <RETURN> 1111111111111111 

-2 SHOW <RETURN> 1111111111111110 

1 SHOW <RETURN> 1 

2 SHOW <RETURN> 10 

The Forth word NEGATE is used to return the two’s complement of the top 

stack value. 

3 NEGATE . < RETURN> -3 ok 

-4 NEGATE . <RETURN> 4 ok 

0 NEGATE . <RETURN> 0 ok 

All Forth arithmetic is performed using the two’s complement techniques, 

although it is completely automatic and therefore transparent to the pro¬ 

grammer. 

In Chapter 7 we encountered the limits of precision of single numbers 

when calculating squares and cubes. We were restricted to the cube of 

numbers less than 40 for unsigned numbers. More generally the results of 

arithmetic operations are treated as signed values, restricting the mag¬ 

nitude of the result to 32767. This can be a severe restriction in some 

circumstances, particularly when trying to deal with decimal fractions, 

there being only 4 ‘safe’ digits with which to work. To increase the 

number of digits (ie. precision) Forth provides operators which act on 

pairs of 16-bit values as if they w'ere a single 32-bit number. These are held 

in two contiguous cells in memory, and thus represent twm stack items. 

Like single numbers, double numbers can be treated as signed or unsig¬ 

ned values, with bit 31 being used as the sign bit. The range of values 

available is dramatically increased by the use of 32-bit numbers. Signed 

values in the range 4-2,147,483,647 to —2,147,483,648 may be repre¬ 

sented, giving 9 ‘safe’ decimal digits for results. They give an unsigned 

maximum of around 4.2 billion! 

The Forth interpreter recognizes a double number by the inclusion of a 

full-stop embedded somewhere within the numeric string. Double 

numbers may be output as signed values with the word D. 
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1.00 D. <RETURN> 100 ok 

0.20 D. <RETURN> 20 ok 

4321. D.<RETURN> 4321 ok 

.4321 D.<RETURN> 4321 ok 

Note that the inclusion of a point within the number has no significance 

other than to signal to the interpreter that a double length number is to be 

produced. Most Forth systems allow punctuation other than a decimal 

point such as commas, dashes and colons. Since a common use of double 

numbers is to represent decimal fractions the position at which the point 

occurred in the string is often recorded somewhere in a system variable 

called dpl (‘decimal places’) which will always contain the number of 

digits to the right of the decimal point in the last numeric input string. 

Input of a single number normally leaves dpl set to a negative value. If 

your system has the word DPL numeric input should have the following 

effects: 

1234 DPL ? <RETURN> -1 ok 

. <RETURN> 1234 ok 

1234. DPL ? <RETURN> 0 ok 

D. <RETURN> 1234 ok 

123.4 DPL ? <RETURN> 1 ok 

D. <RETURN> 1234 ok 

1.234 DPL ? <RETURN> 3 ok 

D. <RETURN> 1234 ok 
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.1234 DPL ? <RETURN> 4 ok 

D. <RETURN> 1234 ok 

Words introduced in this section: 

NEGATE ( n—n) 

Reverses the sign of the single number on the top of the stack by returning 

its two’s complement. 

dpl ( —addr) 

A variable containing the number of decimal places used in the most 

recent numeric input. 

8.3 Output formatting 

We have seen that double numbers may be used to represent decimal 

fractions in Forth, and that for this purpose the number of digits to the left 

of the decimal place in a numeric input string is recorded in a variable 

called DPL. In order to do any processing on decimal fractions, however, 

we need a method of displaying numbers in a fractional format - since D. 

prints out integers only. There is a set of Forth words which allow us to 

display numbers in any format we choose, and according to any numeric 

base. The overall process of output formatting is the conversion of an 

unsigned double number (the top two stack items) to a string of ASCII 

characters: 

<# (—) 
Specify the start of a sequence of number formatting operations. 

# ( ud—ud) 

Produces one digit from the low order of the double number and inserts 

the ASCII value for that digit into the output string. The double number 

is left divided through by the current base. 

HOLD ( char—) 

Inserts the ASCII value on the stack into the next available position in the 

output string. 

#> ( d—addr,ct) 
Terminates an output formatting sequence. Clears the unwanted double 

number from the stack and replaces it with the start address and character 

count of the output string. The values returned are suitable arguments for 

TYPE. 
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Number formatting is always performed using unsigned double length 

values. A formatting sequence is always enclosed by the primitives <# and 

#> and within these the words # and hold are used to specify the format 

of the string produced. Successive digits may be produced from the low 

order of the stack value such that using # on the double number 1234 will 

insert the ASCII for 4 into the first position in the string and leave the 

double number 123 on the stack. The next use of # inserts the ASCII for 3 

and leaves 12 on the stack and so on. In order to produce all the remaining 

digits from a double number the additional primitive #s is defined. Nor¬ 

mally #s ignores leading zeros, but it always produces at least one digit so 

that if it acts on a double number zero then one zero will be inserted into 

the string. HOLD enables punctuation such as decimal points and commas 

to be embedded into the output string. The words #, HOLD and #s must 

never be used without being enclosed between <# and #>. 

The use of number formatting is best explained with reference to some 

examples. For instance to output a double number value representing 

pounds and pence the definition .POUNDS may be used. 

: . POUNDS ( ud—) 

<# # # 46 HOLD #S 32 HOLD 35 HOLD #> 

TYPE SPACE ; 

The two digits to the left of the decimal point are produced using # # and 

then the decimal point is inserted (46 is ASCII for a full stop). The pounds 

portion of the string is produced by #s and then a space (32 hold) and a 

pound sign (35 hold) are placed at the beginning. 35 is ASCII for the 

character used in this instance as a substitute pound sign. If your 

system can display the real thing then the appropriate code may be 

substituted. Finally the appropriate arguments for TYPE are left on the 

stack by #> which also removes the unwanted double number. 

More generally we want to display the results of our double number 

calculations to a fixed number of decimal places. In the case of values 

representing decimal currencies two places are normally used. We now 

have the tools necessary to perform simple ‘fixed point’ calculations. 

Suppose we wish to work to two decimal places. A suitable output word 

could be defined as follows. 

: #DPLS ( ud-ud ) # # ; 

: .FRACTION ( ud---) 

<# #DPLS 46 HOLD #S #> 

TYPE SPACE ; 

The decimal places are formatted by a separate word #DPLS which has 
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been named with a # prefix to remind us that it must only be used between 

<# and #>. This operation has been factored out so that it may easily be 

redefined to cope with a different number of decimal places. We may use 

this to display the results of double number calculations. Try the following 

operation: 

100.00 20.25 D+ .FRACTION <RETURN> 120.25 ok 

D+ is a double number arithmetic operator. Its action is the same as that of 

+ except that it expects two double numbers as input parameters and 

returns a double number result. The results of the addition above are 

‘correct’ if all the numbers are viewed as decimal fractions, but only 

because care was taken with the numbers input. The following sequence 

gives a ‘wrong’ result: 

100.0 20.25 D+ .FRACTION <RETURN> 30.25 ok 

The error here is not in the addition but in the interpretation we have 

placed on the numbers input. To us the number 100.0 is exactly the same 

as the number 100.00 whereas to Forth they are not the same. The two 

strings will produce a different number on the stack; 100.0 gives the 

integer value 1000, whereas 100.00 produces the integer 10000. The 

addition performed by D+ as with all Forth arithmetic is performed on two 

integers. The actual addition performed was 1000 + 2025 which equals 

3025, which was then displayed with two decimal places. In order to 

perform fixed point arithmetic successfully using double numbers all 

numbers input must be ‘scaled’. In the above example the 100.0 should be 

multiplied by 10 to provide for two decimal places. Later on we will be 

looking at some definitions that automatically perform this scaling 

function. 

Apart from D+ one other double number operator is always resident on a 

Forth system. It is DNEGATE which returns the two’s complement of a 

double number. Its action is in every way similar to NEGATE. By using 

DNEGATE a double number subtraction may easily be defined: 

: D ( dl,d2—dl-d2) DNEGATE D+ ; 

Before using .FRACTION with this we need some way of displaying signed 

double numbers. If .FRACTION is used on a negative value it will treat it as 

a large positive value, and #s will attempt to display a huge number of 

digits. To assist in the display of signed double numbers there is a further 

number formatting primitive, SIGN, which conditionally inserts a minus 

sign into the string if the third stack item is negative, sign could be 

defined in terms of HOLD: 

: SIGN ( n,ud—ud) ROT 0< IF 45 HOLD THEN ; 

This enables us to format a signed double number given a method of 
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producing its absolute value. The word abs returns the absolute mag¬ 

nitude of the signed value on the stack. A double number equivalent may 

be defined using dnegate: 

: DABS ( d—ud) DUP 0< IF DNEGATE THEN : 

Note that the sign bit of a double number is contained in the high order 

cell. This can therefore be tested as a single number by DUP0< giving true 

if the sign bit is set. The value is negated only if it is negative. We may 

now recode .fraction so it can handle signed double numbers: 

: .FRACTION ( d—) 
SWAP OVER DABS 

<# #DPLS 46 HOLD #S SIGN #> 

TYPE SPACE ; 

The first line of the program saves the sign of the double number as the 

third stack item, ready for use by SIGN. DABS is then used to obtain the 

absolute value of the number prior to formatting. With care fractional 

additions and subtractions may now be performed and the results dis¬ 

played. 

To format single numbers they must be converted to a double number 

before using the output formatting primitives. Signed single number 

values may be formatted by first saving the sign, then producing the 

absolute value of the number using abs, and finally placing a zero on the 

stack to act as the high order byte of the double number. The sequence of 

words which achieves this is: 

DUP ABS 0 

and this phrase should prefix any formatting sequence. As a simple 

example consider the problem of displaying a single number right aligned 

in a specified column width. Some Forths already have a word to do this 

called .R which takes two stack parameters; the number to be displayed 

and the column width. Here is a possible definition: 

: .R ( n,w- ) SWAP ( save column width) 

DUP ABS 0 ( save sign and make double number) 

<U #S SIGN #> ( format for signed output) 

ROT OVER - SPACES ( print leading spaces) 

TYPE ; ( type output string) 
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Words introduced in this section: 

<# (—) 

Specifies the start of a sequence of number formatting operations. 

# ( ud—ud) 

Produces one digit from the low order of the double number and insert the 

ASCII value for that digit into the output string. The double number is 

left divided through by the current base. 

hold ( char—) 

Inserts the ASCII value on the stack into the next available position in the 

output string. 

#> ( d—addr,ct) 

Terminate an output formatting sequence. Clears the unwanted double 

number from the stack and replace it with the start address and character 

count of the output string. The values returned are suitable arguments for 

TYPE. 

SIGN ( n,d—d) 

Inserts a minus sign into the next available position in the output string 

only if n is negative. 

8.4 Number input conversion 

Until now all numeric input has taken place via the Forth interpreter. 

Often we want to accept numeric input from within a program, perhaps 

with a prompt to the user. For this purpose it is useful to have a word 

which will convert a string input from expect to a number on the stack. 

The Forth interpreter employs a routine which does this, normally called 

number, number expects a single stack parameter, an address which 

contains a character count. NUMBER converts successive characters in the 

string working towards high memory. If during this process a valid 

punctuation mark is encountered a double number will be produced. If a 

character is found which is neither a valid punctuation mark nor a valid 

digit then number aborts issuing an error message. NUMBER is the word 

responsible for the setting of dpl. The following routine might be used to 

input a number from the keyboard during execution of another program; 

: ENTER ( —d or n) 

PAD DUP 10 2DUP 

BLANK EXPECT 

1- NUMBER ; 
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The value returned by enter will be a double length value if punctuation 

is included in the input string, otherwise it will be single length. The 

inclusion of a minus sign before the number will produce a negative value. 

NUMBER is designed to operate in conjunction with another Forth 

primitive, WORD. It requires a single value on the stack representing an 

ASCII character, word looks forward from the current position in the 

input message buffer until it finds the character. The string in between is 

then copied to the top of the dictionary (here) with a character count in 

the first byte. On most systems the address of this count is then returned 

to the stack. The most common value given to WORD is 32, causing it to 

search for the next space as in: 

: ECHO 32 WORD COUNT TYPE ; 

ECHO XXXX < RETURN > XXXX ok 

ECHO Hello < RETURN> Hello ok 

The word COUNT is extremely useful for handling string data. It takes a 

count address and returns the address incremented by 1 (that of the first 

character) with the count on top ready for type, fill etc. word can thus 

very conveniently be used with NUMBER. Note that number makes no use 

of the character count, it merely skips over it. 

ENTER will produce a number on the stack from the string that follows it 

on input: 

: ENTER 32 WORD NUMBER ; 

ENTER 1234 <RETURN> 

. <RETURN> 1234 ok 

ENTER -12.34 

D. <RETURN> -1234 ok 

All good Foith systems have another string-to-number conversion routine 

called convert. This word is more primitive than NUMBER, and is conse¬ 

quently more flexible if more difficult to use. NUMBER itself is often 

defined in terms of convert, convert is used to convert a portion of a 

string into a number. It requires two values on the stack; a double number 

with the count address of the string on the top. As convert traverses the 

string it produces a succession of digits which are added into the double 

number. Unlike number, convert does not abort on encountering a 

‘non-digital’ character; instead it stops execution as normal leaving the 
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stack with the double number result and the address at which conversion 

broke down. The operation of CONVERT is demonstrated in the following 

test routines: 

: DIGITS ( addr — ) DUP 0 0 ROT CONVERT 

ROT ROT D. 

SWAP - 1- . Digits converted" ; 

: nn ( addr — n,addr) 0 0 ROT CONVERT SWAP DROP ; 

: DATE ( —n,n,n) 32 WORD nn nn nn DROP ; 

DIGITS may be edited into either of the definitions of ENTER in place of 

number since it takes the same parameter. It duplicates the address and 

places a double number zero on the stack into which the digits can be 

accumulated. The address is then rotated into the correct position for 

CONVERT. The initial address and that returned by convert are used to 

compute the number of digits converted, and this is displayed along with 

the value accumulated. DATE converts a string representing a date in the 

form dd.mm.yy into three single numbers on the stack, the top number 

being the year. The conversion work is done by nn which uses convert to 

produce a single number. Note that convert may be used in succession 

since its input and output stack values are compatible. 

Words introduced in this section: 

number ( addr—dorn) 

Converts the character string at addrl to a number on the stack. Aborts if 

string connot be converted. 

convert ( dl,addrl—d2,addr2) 

Converts string at addrl to double number. New value is added into dl to 

produce d2. Addr2 is the address of the first non-convertible character. 

8.5 Forth arithmetic 

A selection of Forth arithmetic operators has been used so far, and those 

which perform addition and subtraction and multiplication require little 

further explanation. All give results which are algebraically correct with 

respect to the signs of their input parameters, so long as the results fall into 

the signed range of single numbers. Getting satisfactory results from 
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calculations using division is rather more tricky. This applies not only to 

Forth division but to computer division in general. 

To a mathematician the result of dividing a number by zero will be 

infinite. Within computer logic the result of a division by zero is undefi¬ 

ned. The result of such a division may be consistent, but will vary between 

systems. Assuming you never deliberately divide by zero, any such occur¬ 

rence during program execution indicates a programming error. It is 

therefore wise to re-define / so that it tests for this condition and aborts 

execution with a message if it should arise. 

: / ( n1,n2—n1/n2) DUP 

IF / 

ELSE Division by zero attempted" 

ABORT 

THEN ; 

After a little experimentation with / you should discover a serious limit¬ 

ation on the results produced: 

10 5 / <RETURN> 2 ok 

11 5 / <RETURN> 2 ok 

12 5 / <RETURN> 2 ok 

13 5 / <RETURN> 2 ok 

14 5 / <RETURN> 2 ok 

15 5 / <RETURN> 3 ok 

All the results produced are rounded down so that whilst 2 might be a 

perfectly reasonable answer in the first 3 divisions, 13/5 and 14 / 5 will not 

give 3 - the nearer answer. The results obtained are the same as when we 

perform long division when we would say that 14 divided by 5 equals 2 

with a remainder of 1. The difference is that normally we will process the 

remainder in some way, perhaps using it to produce a fraction, or round 

the result to the nearest integer, whereas in Forth / simply discards 

remainders. 

To allow us to deal with remainders from division, Forth provides two 

additional operators. They are: 

mod ( nl,n2—remainder) 

Divides nl by n2 and returns the remainder of the division. 
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/MOD ( nl,n2—remainder quotient) 

Divides nl by n2 and returns the quotient with the remainder beneath. 

A division which will round up or down based on the size of the remainder 

may be defined by using /MOD. In this example the routine will round up 

only if the ‘fractional’ part of the division is greater than 1/2. This 

condition is met when the remainder is greater than half the divisor, i.e. 

100/3 = 3 remainder 10, or 30 and 10 hundredths, so since 50 hundredths 

is 1/2 the result is rounded down. 

: /ROUNDED ( n1,n2—n1/n2) 

DUP 2 / ( —n1,n2,n2/2) 

ROT ROT ( — n2/2,n1,n2) 

/MOD ( -n2/2,rem,quot) 

ROT ROT C -quot,n2/2,rem) 

< (-quot,f) 

+ ; 

14 5 /ROUNDED . <RETURN> 3 ok 

Note that some systems provide 2/ and 2* as single words. /ROUNDED first 

computes the number which is nominally ‘one half by halving the divisor. 

This value is saved for comparison with the remainder produced by /MOD 

in the phrase: 

ROT ROT < 

which effectively asks, ‘is the remainder greater than one half and if it is 

returns a true flag. The need for a conditional structure is avoided by 

simply adding this flag (either 0 or 1) to the quotient produced by /mod. 

When a division is embedded in a more complex calculation the problems 

associated with getting a reasonable result from the complete calculation 

become much more tricky. As an example consider how we might cal¬ 

culate the circumference of a circle from its radius using the formula: 

circumference = 2 * pi * radius 

The problem includes the constant pi, which is not an integer. Ordinarily 

we might multiply by 3.1428 if the calculation warranted 4 decimal places 

but we are stuck with integers only. One of the first approximations used 

for pi was the fraction 22/7. This could be used in the calculation so that; 

circumference = 2 * radius * (22 / 7) 

This involves two multiplications and a division, and the order in which 

they occur affects the accuracy of the result. Four possible codings for a 

circumference routine using the 22/7 approximation are: 
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: CIRC1 ( rad-circ) 2* 22 7 / * ; 

: CIRC2 ( rad-circ) 7 / 22 * 2* ; 

: CIRC3 C rad-circ) 2* 7 / 22 * ; 

: CIRC4 ( rad-circ) 2* 22 * 7 / ; 

: SHOW DUP CIRC1 U. DUP CIRC2 U. 

DUP CIRC3 U. CIRC4 U. ; 

The table shows the performance of these routines for different mag¬ 

nitudes of the radius, in comparison with the calculator result for exactly 

the same computation. 

Radius CIRC1 CIRC2 CIRC3 CIRC4 CALCULATOR 

10 10 44 44 62 62 

100 600 616 616 628 628 

1000 6000 6248 6270 62460 6285 

In CIRC1 the approximation is divided out before using it in the calculation. 

Since 22 divided by 7 is 3 in integer arithmetic all we ever compute is 6 * 

radius. In CIRC2 and CIRC3 we divide by 7 before multiplying by 22, which 

means that any truncation errors produced by the division are magnified 

by a factor of 22. The best results are produced by CIRC4, which gives 

results in accordance with the integer part of the calculator result until it 

receives a 4-figure input, when its accuracy breaks down. The reason for 

this is that in order to minimize the error produced by division we have 

multipled by 22 first. Using 1000 the result is 44000 - a negative number 

as far as Forth arithmetic is concerned. The division is thus performed on 

the minus number giving a negative result but since it is displayed with u. 

the apparently arbitrary value 62460 appears. This can be avoided by 

putting the 2* at the end of the calculation: 

: CIRC5 ( rad—circ) 22 * 7 / 2* ; 

leaving the positive number 22,000 for the division. This leads to reason¬ 

able results for the full range of radii 0-1000. If we now try to use CIRC5 

with 10000 another snag is encountered. The result of the first operation 

would be 220,000 - well outside the range of single numbers - giving us no 
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chance with the rest of the calculation. Fortunately there is a word which 

overcomes this problem, */ (star slash), which allows us to multiply by a 

fraction in one step. It requires 3 parameters, a single number, a multi¬ 

plier, and a divisor. 

*/ ( nl,n2,n3—nl*n2/n3) 

Multiplies nl by n2 to produce a 32-bit intermediate and divide this by n3 

to give a single length result. 

What makes this such a useful operation is that the result of the initial 

multiplication is a double length number, allowing for intermediate values 

of 4- or - 20 million. We can incorporate */ into a definition which will 

compute the circumference of a circle giving good integer results for radii 

in the the range 0-10,000 thus: 

: CIRC ( —c) 22 7 */ 2* ; 

Similar to */ is the word ‘/MOD which will return the remainder of the 

division underneath the quotient thus allowing for rounding or other 

processing. Using */ and */MOD is a very convienient way of handling ratios 

in Forth programs. One common application for */ is in the calculation of 

percentages. The definition % returns n2 percent of nl: 

: % ( nl,n2—n) 100 */ ; 

This is used in the pricing application at the end of this section to compute 

discounts based on the quantity of goods ordered. 

In addition to those arithmetic operators which use either double or 

single length data Forth-79 specifies a pair of mixed precision routines for 

multiplication and division: 

u* ( un,un—ud) 

Multiplies two unsigned 16-bit values leaving an unsigned 32-bit result. 

U/MOD ( ud,un—urem,uquot) 

Divides an unsigned 32-bit value by an unsigned 16-bit value, leaving a 

single length remainder and quotient - both unsigned. 

The main use of these routines is in synthesizing new arithmetic opera¬ 

tors of greater precision (see Chapter 9). It is useful to have a selection of 

mixed length routines to perform signed arithmetic. To assist in this a 

method of converting a single number into a double number with the same 

sign is required: 

: S>D ( n-d) DUP 0< 

SWAP ABS 0 

ROT IF DNEGATE THEN ; 

The sign of the single number is tested and the flag saved. The number is 

then converted to its absolute value and a zero placed on the stack as the 
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high order cell of the new double number. The sign flag is then retrieved 

as a condition for negating the double number. This may now be used to 

create mixed addition and subtraction routines: 

: M+ ( d,n—d) S>D D+ ; 

: M- ( d,n—d) S>D D- ; 

In order to produce a signed mixed multiply, the signs of the numbers can 

be processed separately and the correct sign applied to the result of an 

unsigned multiplication: 

: M* ( n,n—d) 2DUP XOR 0< 

ROT ABS ROT ABS U* 

ROT IF DNEGATE THEN ; 

The sign of the result is computed by 2DUP xor which leaves a minus 

number if only one of the sign bits is set. The sign flag is generated and 

saved as the third stack item and the two numbers are converted to their 

absolute values before multiplying with u*. The resulting double number 

is then negated if the third stack item is true. 

Application: 

A supplier of fluffy toys deals with a mixture of wholesale and retail 

customers. The toys come boxed in 50s, and various discounts are offered 

on orders over 2 boxes based on the total quantity ordered according to the 

structure: 

Units Discount 

0-99 0 

100-250 2 

250-499 5 

500-750 7 

750 + 10 

The following programs are used to compute discounts and demonstrate 

the use of Forth arithmetic in a variety of circumstances. 

( Quantities ordered ) 

VARIABLE QTY 

: ORDERED ( n—) 0 MAX QTY ! ; 
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: PACKS ( —n) QTY 3 50 / ; 

( Unit price in pence ) 

200 CONSTANT UNIT 

( Discounts ) 

HERE 2,5,7,10, CONSTANT RATES 

: RATE ( —n) PACKS DUP 

IF 1- 3 MIN 2* RATES + 3 THEN ; 

: DISCOUNT ( —n) UNIT RATE % ; 

: PRICE ( —n) UNIT DISCOUNT - ; 

: TOTAL ( —n) QTY 3 PRICE * ; 

( Display results ) 

: .VALUE ( n-) 100 /MOD . pounds " 

. pence " ; 

: VALUE ( - ) The total value of the order is 

TOTAL .VALUE ; 

: DISCOUNTED ( -) ." The amount discounted is " 

DISCOUNT QTY 3 * .VALUE ; 
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There are a number of points of interest in this application. ORDERED is 
used to set the variable QTY to the total toys ordered. It uses the Forth 
operator MAX which has not yet been introduced. MAX takes two stack 
parameters and treats them as signed values. It leaves on the stack which¬ 
ever was the largest. In this case it is used to exclude negative numbers 
from QTY since 0 MAX always leaves either a positive value or a zero. MAX 

is one of a pair of special comparison words, the other being MIN, which 
returns the smaller of two signed single numbers. MIN is used in the 
definition of RATE to return the discount rate as a percentage according to 
the number of whole boxes. The number of whole boxes is returned by 
packs. Since we are interested in whole packs and not in any excess it is 
appropriate to use straightforward integer division for this purpose, the 
truncated answer being the correct one. 

The discount rates have been incorporated into the dictionary in the 
form of a data table. The appropriate discount rate for a given quantity 
ordered is returned by RATE. RATE uses the number of whole PACKS of toys 
to compute the address of the correct item in the rates table and return its 
contents to the stack. If the order is less than one box there is no discount 
so an IF.. .then structure accesses the rates table only if the value returned 
by PACKS is non-zero, otherwise zero is returned. The cell offset into the 
table is computed by subtracting 1 from the number of boxes, since the 
first rate is at offset 0. The phrase 3 MIN restricts the offset to the bounds 
of the table. The actual address of the data required is computed by 
multiplying the offset by two - two bytes per dictionary cell - and adding 
this to the address returned by RATES. It is from this address that the data 
is finally fetched. 

The computation of prices and discounts is based on a unit price held in 
the constant UNIT. This returns the unit value in pence since we have no 
way of dealing with decimal fractions yet. All monetary values returned 
are also in pence and it is left to the display output words to convert them 
into pounds and pence. This is done by .value which takes the number of 
pence from the stack and uses 100 MOD to return the number of pounds 
with the number of additional pence underneath. The output words 
value and discounted use .value to display pence values as pounds and 
pence. VALUE uses the total VALUE of the order as returned by TOTAL, and 
DISCOUNTED uses the unit discount to compute the total discount and 
display it. 

Words introduced in this section: 

/ ( nl,n2—nl/n2) 
Divides nl by n2 and leaves quotient rounded toward zero. 

mod ( nl,n2—rem) 
Divides nl by n2 and leaves remainder only. Remainder has same sign as nl. 
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/MOD ( nl,n2—rem,quot) 

Divides nl by n2 leaving remainder and quotient. 

*/ ( nl,n2,n3—nl*n2/n3) 

Multiplies nl by n2 then divides double precision result by n3 giving 

single precision quotient. 

*/mod ( nl,n2,n3—rem,nl*n2/n3) 

Multiplies nl by n2 then divides double precision result by n3 giving 

single precision quotient and remainder. 

u* ( un,un—ud) 
Multiplies two unsigned 16-bit values leaving an unsigned 32-bit result. 

u/mod ( ud,un—urem,uquot) 

Divides an unsigned 32-bit value by an unsigned 16-bit value, leaving a 

single length remainder and quotient - both unsigned. 
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9.1 Control structures 

To execute programs computers work sequentially through a list of 

machine instructions. If there were no means of redirecting the flow of 

progam execution the processor would be limited to running right through 

memory and back round to the beginning again. This would make for very 

limited programs. Similarly a Forth program works sequentially through a 

list of higher level instructions. In order to make the computer truly useful 

we must be able to alter the course of this sequential execution so that 

portions of code are only executed under certain circumstances, whilst 

other portions might be executed repeatedly. In order to allow easy 

specification of the flow paths in a program most languages incorporate 

special instructions called ‘control structures’. Forth has a good selection 

of control structures covering both conditional and repetitive execution. 

The structure which deals with linear conditional execution is IF...EL¬ 

SE... then which acts as a simple software switch selecting one of two 

paths for the program to follow according to the results of some test. The 

effect of such a structure on program execution is show in diagram 9.1. 

IF Code ELSE Code 

Diagram 9.1. IF . . . ELSE . . . THEN 
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Computers derive much of their power from the ability to execute 

simple tasks at very high speeds, so that complex tasks may be constructed 

by repeating combinations of simple operations. An example of this is the 

way many computers perform multiplication, where, in order to multiply 

a number by 10, for example, it is added into a total 10 times. In order to 

allow the programmer control over repetition a set of iterative structures is 

incorporated into Forth. 

Repetition may be divided into two main categories; definite repetition, 

and indefinite repetition. An example of the former has already been 

encountered in spaces which prints the specified number of spaces on the 

screen. It does so by executing the routine SPACE the number of times 

indicated by its input, parameter. Definite repetition executes a portion of 

code a fixed number of times. Indefinite repetition, as the name suggests, 

has no fixed limit on the number of repetitions. It may itself be subdivided 

into two types; unconditional (which repeats forever), and conditional 

(which repeats until some condition is met or while some condition holds 

true). No explicit example of indefinite repetition has been encountered 

yet, although the actions of the Forth interpreter are an example of the 

unconditional type, where the keyboard is continually monitored for input 

which is interpreted on receipt of a carriage return. Both conditional and 

unconditional repetition are catered for by Forth control structures. 

9.2 Definite repetition - the DO...LOOP 

In order to execute a sequence of Forth instructions a fixed number of 

times the list must be enclosed by the words do and loop. These words 

must always be contained in a colon definition, and will not work if typed 

in at the keyboard, do specifies the start of the instruction sequence and 

loop marks the end of the structure. Control of the repetition is achieved 

through the parameters passed to do. 

The do...loop structure keeps track of the number of passes through 

the loop by maintaining its own counter. The programmer controls the 

repetition by specifying the initial and terminal values for the counter as 

parameters to do. Each time through the loop the counter is incremented 

by one and compared to the terminal value. If the terminal value has been 

reached then repetition ceases, and program execution continues sequen¬ 

tially with the code following LOOP. When DO executes it takes the top 

stack item as being the initial value for the count and the second stack item 

as its terminal value. The value of the count can be returned to the stack 

from within the structure with the word I which stands for ‘index’, the 

name by which this count is known. This is demonstrated in the next 

definition: 
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: COUNTS ( st end — ) SWAP DO I . LOOP ; 

0 10 COUNTS <RETURN> 0123456789 ok 

20 25 COUNTS <RETURN> 20 21 22 23 24 ok 

-10 0 COUNTS <RETURN> -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 ok 

Note that the value of the index is only incremented up to one less than the 

specified limit. The reason for this is that control over repetition is entirely 

managed by loop. The actions of loop are first to increment the index and 

then to compare it with the limit. If the index is still less than the limit 

then the flow of execution is directed back to the code immediately 

following DO. If they are are equal then execution is allowed to pass 

beyond LOOP. Hence the limiting value for the index was never printed 

out. The effect of the do...loop structure on the flow of program execu¬ 

tion is shown in diagram 9.2. 

Diagram 9.2. DO . . . LOOP 

The initial value to which the index is set is only of interest if the index 

value is to be used within the structure. Often we merely wish to specify 

the number of sh to specify the number of times a sequence is to be 

executed, as in the case of SPACES. In such cases the index is normally 

initialized to zero, as in the following definition: 

: SPACES ( n—) ?DUP IF 0 DO SPACE LOOP THEN ; 
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The DO...LOOP has been encased in an IF...then structure to avoid 

execution if 0 spaces is specified. (Remember the index value is not tested 

until the end of the first pass through the loop.) Note that this is one of the 

most common uses of the word ?dup (-dup on FIG systems). This simple 

form of DO...LOOP can be put to use in recoding the number formatting 

word #dpls used to produce the fractional part of a numeric output string: 

: #DIGITS ( n— ) ?DUP IF 0 DO # LOOP THEN ; 

: #DPLS DPL a #DIGITS ; 

: 46 HOLD ; 

VARIABLE FIXED 

: PLACES ( n—) 0 MAX 6 MIN FIXED ! ; 

: .FRACTION ( d—) SWAP OVER DABS 

<# #DPLS '.' #S SIGN #> 

TYPE SPACE ; 

: .FIXED ( d—) SWAP OVER DABS 

<# FIXED a #DIGITS '.'US SIGN #> 

TYPE SPACE ; 

: .CODE ( ud,n-) <# #DIGITS #> 

TYPE SPACE ; 

The primitive #DIGITS is defined to generate the number of digits given on 

the stack, and is used by the output words .fraction, .fixed and .code. 

The coding of .fraction is the same as that given in Chapter 8 except that 

insertion of the decimal point has been factored out into a separate word V 

also used in .fixed, .fraction now formats the fractional portion of the 

number as dictated by the current contents of DPL, so that if used directly 

after double number input the display should be in exactly the same form 

as on input. In the second example .fixed uses #DIGITS to format a 

decimal fraction according to a fixed number of decimal places held in the 
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variable FIXED. It may be made to print 0-6 decimal places by setting 

FIXED with the command PLACES. The final example allows an unsigned 

double number to be displayed as an n digit ‘code number’ including 

leading zeros. The number of digits to be generated is given as the top 

stack value. 

The loop index may be used in a number of ways. An extremely simple 

but useful example is the definition thru, which will load a range of disk 

blocks specified on the stack. The parameters passed are the first and last 

blocks to be loaded: 

: THRU ( lo,hi—) 1+ SWAP DO I LOAD LOOP ; 

The DO...LOOP structure is extremely valuable when defining string opera¬ 

tions. The basic parameters for all string operations are those which 

describe the string, i.e. a base address and the number of elements. These 

parameters may be fed to a DO...LOOP structure in various ways so that a 

sequence of operations may be performed on each element of the string. 

For instance a simple byte DUMP of a portion of memory could be defined 

by adding the loop index to the base >ddress each time through the loop, 

and fetching from that byte. The following definition outputs in HEX 

format: 

: DUMP ( addr,ct -) 

?DUP IF 0 DO DUP I + Ca .HEX 

LOOP 

THEN DROP ; 

Note that a DROP is required to remove the unwanted address at the end of 

the definition. In this definition the base address is held on the stack 

throughout and the effective address of the string element is calculated on 

each pass by adding the loop index. Alternatively we could feed the start 

and limiting address to the DO.. .LOOP, so that the loop index represents an 

actual address. In this way only one calculation need be performed: 

: DUMP ( addr,ct-) 

?DUP IF OVER + SWAP 

DO I ca .HEX 

LOOP 

ELSE DROP 

THEN ; 

This time an ELSE clause must be introduced to clean the stack when the 

character count is zero. The display produced by this definition is some¬ 

what untidy for long strings. We can display the contents of just 16 bytes 

on each screen line using two DO...LOOP structures, one nested inside the 
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other. The innermost loop prints one full line, whilst the outer loop 

controls the number of lines to be displayed: 

: DUMP ( addr,ct-) 

CR 16 /MOD ROT SWAP 

?DUP 

IF 0 DO 16 OVER + DUP ROT 

DO I C3 .HEX 

LOOP CR 

LOOP 

THEN 

SWAP ?DUP 

IF OVER + SWAP 

do i ca .HEX 

LOOP CR 

ELSE DROP 

THEN ; 

The phrase 16 /MOD leaves the number of lines as the top stack value, with 

the extra bytes as the remainder from the division. The stack is then 

adjusted to leave the base address of the string and the number of lines as 

arguments for the outermost loop. Each time through the loop the start 

and end addresses of the substring are calculated. These addresses are 

then fed to the inner DO...LOOP which displays a line of 16 bytes. On exit 

from the outer loop the extra bytes are displayed by using the remainder 

from the /MOD and whatever address is on the stack to calculate the 

parameters for another similar DO...LOOP structure. Whilst this is a 

reasonable method of coding, the use of nested do...loops within a single 

word often results in obscure source code. It can be avoided by factoring 

out the inner DO.. .LOOP into a separate word: 

: (DUMP) ( addr,ct -) 

?DUP 

IF 0 DO DUP I + C3 .HEX 

LOOP 

THEN DROP ; 

: DUMP ( addt,ct-) 

16 /MOD ROT SWAP 

?DUP 

IF 0 DO 16 2DUP (DUMP) CR + 

LOOP 

THEN 
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SWAP ?DUP 

IF (DUMP) 

ELSE DROP 

THEN ; 

There is a variation of the DO...LOOP which allows the loop index to be 

incremented in steps other than one. This uses the word +LOOP instead of 

LOOP. +LOOP requires the step size as a stack parameter, but otherwise 

operates exactly like LOOP. The value fed to +loop is signed so that the 

loop index may be decremented. This is a useful structure as it allows us to 

use the loop index to access successive cells in memory working either up 

or down, according to whether 2 +LOOP or -2 +LOOP has been specified. 

For example we may define a word .S which displays the entire contents of 

the stack non-destructivly: 

: .S DEPTH ?DUP 

IF 2* S0 5) 2- 

DUP ROT - SWAP 2- 

DO I a U. 

2 +L00P 

<-Top" CR 

ELSE Stack Empty " 

THEN ; 

It is often useful to include a condition for an early exit inside a DO.. .LOOP 

- a search of a fixed length list for a particular value, for instance, would be 

terminated if the value was found. Early exit may be forced by including 

the word LEAVE inside a conditional structure, leave causes the loop to 

terminate at the end of the current pass (in Forth-83 immediately). In fact 

it sets the loop index equai to the loop limit, so that when LOOP or +LOOP 

execute a terminal condition is found. Suppose we want to define a string 

operator to search a specified string for a particular ASCII character. 

Given the same parameters as fill, it will return the address of the 

character if found and otherwise a zero. This can be done using the 

address as the loop index, and terminating the LOOP if the character found 

at the address is the same as the search character: 

: MEMBER ( addr,ct/chai-f) 

ROT ROT OVER + 

0 SWAP ROT 

do over i ca = 

IF DROP I LEAVE 

THEN 

LOOP SWAP DROP ; 
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The first line of code computes the start and terminal addresses of the 

string. A false flag is then placed on the stack and the parameters for DO 

moved into position. On each pass the search character is copied over the 

flag and compared to the value at the loop index. If these are equal the 

false flag is replaced by the current value of the index and LEAVE executes. 

Execution continues with the code following THEN to the end of the loop 

and repetition ceases. Should the two values never be equal then the loop 

runs to completion and the false flag remains untouched. The final SWAP 

DROP removes the unwanted character from the stack. 

Some systems, notably PolyForth contain an extremely useful string 

comparison word called -TEXT. This compares two equal length strings to 

see if they are the same, i.e. each element of the first string equal to the 

corresponding element of the other, -text takes three parameters: the 

address of the first string, a count of the number of elements to compare, 

and the address of the second string. It returns a flag which may be in any 

one of three states. If the strings are equal then a zero is returned. If they 

are not then the condition of the flag depends on the values of the last pair 

of elements tested i.e. the first non-equal pair. If the first string is greater 

than the second a 1 is returned, if the opposite is true a -1. A definition of 

-TEXT may be created using a DO...LOOP stucture with an early exit on the 

first difference in the strings: 

: -TEXT ( addrl,ct,addr2 -f) 

SWAP 1 

DO 2DUP ca SWAP ca - 
IF LEAVE 

ELSE 1 + SWAP 1+ SWAP 

THEN 

LOOP 

ca SWAP ca / 

On this occasion the addresses of the string elements are carried on the 

stack. On each pass of the loop a comparison is made by subtracting the 

two string elements giving a true value if they are not equal, in which case 

LEAVE will execute. If they are equal then both addresses are incremented 

to point to the next element. On termination of the loop the correct flag is 

generated by again subtracting the string elements. This also removes the 

addresses from the stack. The loop limit is set by the character count with 

the index intialized to 1. Had it been initialized to 0 then when the two 

strings were equal the string addresses would point to one byte beyond the 

last elements on exit from the loop. This would not give the appropriate 

flag when final comparison was made. 
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Words introduced in this section: 

DO...LOOP do: ( end+1,start—) 

Sets up loop given index range. 

DO...+LOOP do: ( end+1,start—) 

+loop: ( n—) 

Like do...loop but adds stack value of +loop to index instead of always 

1. The loop terminates when the index is greater than or equal to the limit 

if n>0 or when the index is less than the limit if n<0. 

i (—n) 

Places current DO.. .loop index onto the top of the stack. 

LEAVE 

Force exit from do. . .loop. 

9.3 The return stack 

So far no mention has been made of how the do...loop keeps track of its 

index, only that the current value may be returned using I. Obviously the 

stack is not used since DO removes the start and end values of the index. In 

fact DO stores these values on a second stack called the return stack, from 

whence they are retrieved by LOOP or +LOOP. The return stack operates in 

exactly the same way as the parameter stack, and is a vital part of the Forth 

system. Its principle function is to hold the address of the routine to which 

Forth will return after the current operation is complete. This is explained 

more fully in Chapter 11. The action of I is simply to copy the top value 

from the return stack onto the parameter stack, and its use is therefore not 

confined to returning the index of a DO...LOOP (although this is by far the 

most common use). The only action of DO during program execution is to 

move the top two items from the parameter stack and place them on the 

return stack. LOOP retrieves them, increments the index and if it is less 

than the limit then the values are replaced, otherwise they are discarded. 

Note that a DO...LOOP has no nett effect on the return stack. In addition to 

i there are two other words which operate on the return stack. These allow 

DO and LOOP to place values there and subsequently remove them. The 

actions of the return stack operators are sumarized below along with their 

effects on the stack: 

>R ( n—) 

Removes the top value from the parameter stack and places it on the top of 

the return stack. 
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R> (—n) 
Removes the top value from the return stack and places it on the top of the 

parameter stack. 

I ( — n) 

Copies the top value on the return stack onto the parameter stack. 

Although I may be used safely at any time, placing arbitrary values on the 

return stack with >R or removing values with R> in an uncontrolled way will 

always cause a system crash. The return stack may, however, be used in a 

controlled manner for short term storage of values and this can save a good 

deal of stack manipulation. The general rule for use of the return stack is 

that any value placed on the return stack must be removed at the same level 

of the definition and any value removed must be returned there in the same 

way. Similarly values placed on the return stack directly from the keyboard 

must be removed before the return key is pressed! 

The return stack can be useful when manipulating double number stack 

values, as shown in the definitions of 2SWAP and 20VER below. Note that 

these are just as useful for dealing with pairs of single numbers, the address 

and length of a string for instance. The stack notation in the definitions 

below is thus shown as single number for clarity. The second set of brackets 

on each line of code shows the effect on the return stack: 

: 2SWAP ( n1,n2,n3,n4-n3,n4,n1,n2) 

>R (-111,02,03) (-o4) 

ROT ROT ( —o3,o1,o2) ( —n4) 

R> (-o3,o1,o2,o4) (-) 

ROT ROT ; ( —o3,o4,o1 ,o2) ( —) 

: 20VER ( o1,o2,o3,o4-ol,o2,o3,o4,o1,o2) 

>R >R ( -o1,o2) ( -o4,o3) 

2DUP ( -o1,o2,o1,o2) ( -o4,o3) 

R> (-ol,o2,o1 ,o2,o3) (-o4) 

ROT ROT ( —o1,o2,n3,o1,o2) ( ---o4) 

R> ( -ol,n2,o3,o1,o2,o4) ( -) 

ROT ROT ; ( -ol,o2,o3,n4,o1,o2) 

The return stack should be used to avoid over-complex and lengthy juggling 

with the parameter stack. This can occur when creating new mixed 

precision arithmetic operators. For example Ml may be defined to perform 

signed mixed length division and complement the mixed operators defined 

in Chapter 8. Difficulty with the stack arises when the sign of the result is 

computed and the arguments for the division are to be converted to their 

absolute values. The return stack is used to relieve the situation: 
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: M/ ( d,n-n) 2DUP XOR ( sign of result) 

>R >R DABS ( absolute double number) 

R> ABS ( absolute single number) 

U/MOD SWAP DROP ( discard remainder) 

R> 0< ( result negative?) 

IF NEGATE THEN ; 

Further examples of return stack use during mixed length arithmetic are 

contained in the application at the end of this chapter. 

Words introduced in this section: 

>R ( n—) 
Move the number on the top of the parameter stack onto the top of the 

return stack. 

R> ( —n) 
Move the number on the top of the return stack onto the top of the 

parameter stack. 

9.4 Indefinite repetition 

The start of a section of code to be repeated an indefinite number of times 

is always marked by the word BEGIN. The end may be marked in one of 

three ways depending on the type of repetition required. Code to be 

repeated unconditionally (i.e. forever) is enclosed by a begin.... AG AIN 

structure. Since no exit from the loop is possible via again any demonstra¬ 

tion program must include a conditional ABORT to avoid ‘hanging up’ the 

system. The word WAIT below issues a message and then goes into an 

unconditional loop waiting for keys to be pressed. The <SPACE> bar 

causes the routine to issue a second message and abort. Keys other than 

than the space bar are ignored and result in another pass through the loop: 

: WAIT ( —) Waiting" 

BEGIN KEY 32 = 

IF At last" ABORT THEN 

AGAIN ; 

begin...again loops are most often used at the outermost level of an 

application to prevent the system returning to the Forth interpreter. 

Conditional repetition is controlled by means of a BEGIN...UNTIL struc¬ 

ture. This causes all code within the structure to be executed until some 

condition is true. The truth value of this condition must be left on the 
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stack and is taken as a parameter by until. If the top stack value is true 

the until allows execution to continue. If it is false, program execution is 

directed back to the word immediately following BEGIN. The general form 

of this structure is: 

: PROCESS BEGIN code to be repeated 

terminating condition 

UNTIL 

subsequent code ; 

It is often useful to be able to display double number values unsigned, and 

sometimes the word U.D is defined for this purpose. A definition may be 

coded using the number formatting primitive # inside a repeating struc¬ 

ture. Each time # executes, one digit is inserted into the output string and 

the double number on the stack is left, divided through by the contents of 

BASE. All digits barring leading zeros have been extracted when the double 

number value falls to zero. We can specify the procedure to do this in 

pseudo code: 

BEGIN extracting digits 

UNTIL the double number = 0 

A definition of U.D may be coded: 

: U.D ( ud-—) <# BEGIN # 2DUP D0= UNTIL #> 

TYPE SPACE : 

The double number conditional test D@= can be defined thus if it is not 

already present on your system: 

: D0= ( d—f) OR 0= ; 

Those Forth systems which do not contain AGAIN may achieve the same 

effect by using the phrase 0 UNTIL, thus always forcing the flag to false. 

As with the DO...LOOP structure the test for termination is performed 

after one pass is complete. This means that the code within the 

BEGIN...UNTIL is always executed at least once. Although this can be 

avoided by appropriate placing of if...else...then a more versatile struc¬ 

ture is provided to handle conditional repetition. This is the 

BEGIN...WHILE...REPEAT. Here the terminal condition is performed part 

way through the loop, while acts in a similar fashion to if. If while finds 

a true value on the stack the program execution continues until REPEAT is 

encountered, when it is directed back to the code following BEGIN. If 
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WHILE finds a false flag the loop is exited and execution restarts with the 

code following repeat. The general form of use is: 

: PROCESS BEGIN code always executed 

terminal condition 

WHILE code to be executed on true 

REPEAT 

subsequent code ; 

Note that the logic value which causes repetition to cease is the opposite 

from that used by begin...until. The code following begin is always 

executed at least once whereas that following while is conditional. By 

performing the conditional test immediately after begin, and placing all 

code to be repeated between while and repeat, the loop is effectively 

pretested - and thus may not execute at all. An example of the use of this 

structure is the routine below which waits for one of the numeric keys to 

be pressed and returns the value of the corresponding digit (any other 

keystrokes being ignored). 

: RANGE ( —lo,hi+1) 48 58 ; 

: NUMERIC ( —n) BEGIN KEY 

DUP RANGE WITHIN NOT 

WHILE DROP 

REPEAT 48 - ; 

The routine goes straight into the loop and waits for a key. 

If the value returned falls in the range of the decimal digits then the loop 

is exited, and the digit produced by subtracting 48 (ASCII ‘0’). If the 

character is not in range then the loop continues, the character being 

discarded, and KEY executes again. 

The usage of the various Forth control structures is best illustrated in 

the context of an application and the Value Added Tax reckoner in the 

next section uses most of the techniques discussed in this chapter. 
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a) BEGIN . . . AGAIN b) BEGIN . . . UNTIL 

Diagram 9.3. Indefinite Repetition 

Words introduced in this section: 

BEGIN... AGAIN 

Loops back to begin unconditionally from again. 

BEGIN...UNTIL until: (f—) 

Loops back to BEGIN until the flag is true at UNTIL. 
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BEGIN.. .WHILE.. .REPEAT while: (f—) 

Loop while the flag is true at while, repeat loops unconditionally to 

BEGIN. If flag is false at WHILE execution continues after repeat. 

9.5 Application - a handy tax reckoner 

A common problem for small businesses registered for VAT is calculating 

the amount of tax paid on a VAT inclusive invoice. This occurs because 

items purchased though retail outlets for cash, such as petrol, include the 

VAT in the price and this must then be reclaimed each quarter. Cal¬ 

culating three months VAT can be a time consuming task, especially if 

large numbers of receipts are involved, and is an ideal task for a computer. 

Specification: 

The programs will allow the user to enter a batch of gross receipt figures, 

compute the nett and tax portions for each, and display the results of one 

batch entry in columns with the accumulated totals for the batch. 

All computations must give results in a suitable form to be accurate 

when displayed to two decimal places, and so are best handled using fixed 

precision arithmetic on double number values. The input from the user 

must therefore be converted to pence before any further processing takes 

place. As successive items are entered the values must be stored for display 

at the end of a batch and added into batch totals. Suitable storage must 

therefore be arranged. One method is to use double length indexed 

variables or arrays for this purpose, so that the following phrase provides 

the address of the ‘nth’ double number in a batch of gross figures: 

n GROSS 

This is convenient for the batch display since a do...loop may be used 

with the loop index being used to generate the addresses of successive 

items. 

The program will also have the option of processing more than one 

batch. At the end of each batch the user is queried as to whether another 

batch is required. The accumulated totals of successive batches will be 

held in a set of grand totals and displayed at the end of each batch. 

Programs: 

a. Calculations 

Throughout this application we need to perform multiplications and divi¬ 

sions on double numbers and get double number results. So far none of 

the Forth arithmetic operators will do this, so others must be constructed. 

The mixed length routines u* and u/mod may be used as tools for this 

purpose: 
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( Mixed precision arithmetic ) 

: T* C ud,un-ut) DUP >R ( save multiplier ) 

SWAP >R ( save high order cell) 

U* ( multiply low order) 

C leaves carry on top of stack) 

R> R> U* ( multiply high order) 

ROT M+ ; ( add in carry) 

: T/MOO ( ut-un,ud) >R I ( keep divisor ) 

U/MOD ( divide high order) 

R> SWAP >R ( retrieve divisor) 

( save high result) 

U/MOD ( dive low order) 

R> ; ( restore high result) 

: M*/M0D ( ud,un,un-un,ud) >R T* R> T/MOD ; 

: M*/ ( ud,un,un-ud) M*/M0D ROT DROP ; 

The routine M*/ which discards the remainder is used throughout this 

application. 

b. Input and output 

To control input scaling and output format the idea of using a variable to 

contain the position of the fixed decimal point introduced in the previous 

chapter is developed. Output is performed according to the value fixed 

using the definitions of #DIGITS and V given in section 9.1. The routine 

D.R prints a signed double number as a fixed point decimal fraction right 

aligned in a column whose width is specified by the top stack item. This is 

achieved by subtracting the length of the output string from the column 

width, and printing that number of spaces before typing the string: 

( Fixed Point Output ) 

VARIABLE FIXED 

: PLACES ( n—) 0 MAX 5 MIN FIXED ! ; 



: F.R ( d,n-) >R SWAP OVER DABS 

<# FIXED 3 #DIGITS '#S SIGN #> 

R> OVER - SPACES TYPE ; 
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Scaled input is achieved by using the difference between the values in dpl 

and FIXED to produce a scaling factor by which the input number will by 

multiplied or divided as appropriate. The scaling factors themselves are 

held in a table whose start address is returned by FACTORS. This table is 

accessed through the word factor which returns a scaling factor gover¬ 

ned by the top stack item, so that 2 FACTOR produces the factor for a scale 

up or down of two decimal digits. Since scaling will be performed on the 

results of NUMBER, and these may be either double or single in length, the 

contents of dpl must be tested before any scaling can be done to determine 

whether a double or single number is to be scaled. A single length integer 

input may be brought into the correct scale with a mixed multiply by the 

contents of fixed. For a double number the ‘direction’ of scaling must be 

determined as well as the amount. This is done by subtracting the contents 

dpl from the contents of fixed. The absolute difference governs the 

scaling factor, and the sign of the difference the direction. If DPL is less 

than FIXED then a scale up is required and the result of the subtraction is 

positive. If it is greater, then a scale down is required and the difference is 

negative. The actual scaling operation is performed using M*/ to multiply 

by FACTOR/1 for a scale up, or 1/FACTOR for a scale dowm. 

( Scaling Input ) 

HERE 10 , 100 , 1000 , 10000 , CONSTANT FACTORS 

: FACTOR ( n —n) 1- 3 MIN 2* FACTORS + 3 ; 

: DOUBLE ( d---d ) 

FIXED a DPL a - ?DUP 

IF DUP 0< ( 1 = scale down) 

SWAP ABS FACTOR 1 ( set for scale up) 

ROT ( direction flag) 

IF SWAP THEN ( scale down) 

M*/ ( scale) 

THEN ; 

: SINGLE ( n—d) FIXED a FACTOR M* ; 
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: SCALE ( n/d—-d) 

DPL 3 0< 

IF SINGLE 

ELSE DOUBLE 

THEN ; 

10 CONSTANT COLUMN 

: ENTER ( —d) CR Gross Value: " 

PAD DUP COLUMN 2DUP BLANK EXPECT 

1- NUMBER SCALE ; 

ENTER produces consistently scaled numeric input. The constant COLUMN 

is used by all the numeric display words in the application as an argument 

for D.R and the value may be altered to suit a particular display. 

c. Storage and display 

To process batches of ten items at a time we require three 10 element 

double number arrays for gross value, nett value and tax. In addition three 

32-bit batch totals and three 32-bit grand totals are needed. The word 

CELLS is defined to allow us to reserve a number of cells of dictionary space 

for storage, initialize them all to zero and attach a name for reference in 

programs. It uses its stack parameter as an argument for a do...loop 

which compiles in zeros. The maximum number of cells which may be 

reserved in this wray is 255. CELLS compiles the cell count into the first byte 

of the memory string. The first element in each array is therefore at an 

address one greater than that returned by the name. To reserve space for 

double length numbers, twice as many cells as there are elements in the 

array must be specified. The start address of a double length element 

within the array is computed by ELEMENT, which takes the address of the 

count byte with the element number on top as stack arguments. Two 

words are defined for re-initializing the arrays to zero; 6GRAND, which is 

used only once at the start to zero the grand totals, and CLEAR wTiich clears 

all variables associated with a batch, and is used prior to processing each 

batch of items. The variable ADDED is used to control batch operations, 

containing the number of items added to the current batch. It is accessed 

through the words +ITEM to increment the contents and ITEMS to return 

the number of items added. ADDED is cleared for each new batch by 

CLEAR. 
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( Storage ) 

: CELLS ( n-) HERE OVER 0 MAX 255 MIN C, SWAP 0 

DO 0 , LOOP CONSTANT ; 

: ELEMENT ( addr,n—addr) OVER C3 MOD 2* 2* + 1+ ; 

20 CELLS GROSS 20 CELLS NETT 20 CELLS TAX 

12 CELLS TOTAL 12 CELLS GRAND 

VARIABLE ADDED 

: ITEMS ( —n) ADDED 3 ; 

: +ITEM ( — ) 1 ADDED +! ; 

: CLEAR ( — ) 0 ADDED ! GROSS COUNT ERASE NETT COUNT 

ERASE 

TAX COUNT ERASE TOTAL COUNT ERASE ; 

: 0GRAND ( — ) GRAND COUNT ERASE ; 

The arrays can now be redefined to act as indexed variables, thus sim¬ 

plifying their use in later programs: 

( Array access ) 

: GROSS ( n—addr) GROSS SWAP ELEMENT ; 

: NETT ( n—addr) NETT SWAP ELEMENT ; 

: TAX ( n—addr) TAX SWAP ELEMENT ; 

: TOTAL ( n---addr) TOTAL SWAP ELEMENT ; 

: GRAND ( n—addr) GRAND SWAP ELEMENT ; 
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More sophisticated methods of producing named ‘data structures’ are 

discussed in Chapter 12. 

Separate display words are defined for the elements of each array. They 

take the element number as a parameter, and display the contents right 

aligned. .ROW displays one row of figures as determined by its stack 

parameter, .head displays the column headings. Both these words use the 

definition tab which skips over a column width. A whole batch of figures 

is displayed by .batch if the contents of added are non-zero. After 

printing the column headings a DO...LOOP is set up to print successive 

rows of figures. A row is displayed only if the GROSS figure is non-zero. 

( Display ) 

: .POUNDS ( addr,-) 2£D COLUMN F.R ; 

: .GROSS ( n-) GROSS .POUNDS ; 

: .NETT ( n—-) NETT .POUNDS ; 

: .TAX ( n—) TAX .POUNDS ; 

: .TOTALS ( n—-) Batch Totals:" 7 SPACES 

3 0 DO I TOTAL .POUNDS LOOP ; 

: .GRAND ( n—) ." Grand Totals:" 7 SPACES 

3 0 DO I GRAND .POUNDS LOOP ; 

: TAB COLUMN SPACES ; 

: .HEAD ( ---) TAB TAB 

Goods" ." VAT" Total" 

CR CR ; 

: .ROW ( n—) TAB TAB DUP .NETT DUP .TAX .GROSS ; 
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: .BATCH ( —) ITEMS ?DUP 

IF CR CR .HEAD 0 

DO I GROSS 23 D0= NOT 

IF I .ROW CR THEN 

LOOP CR 

.TOTALS CR 

ELSE ." No items added to batch" 

THEN CR ; 

d. Processing 

The basic computation to be performed on each item entered is a simple 

one. If VAT is charged on goods at RATE percent of the goods value, then 

the gross invoice value is obtained by applying the formulae: 

VAT = GOODS * RATE/100 

TOTAL = GOODS + VAT 

The GOODS and VAT figures may be calculated from the gross figure 

from the formulae: 

GOODS = TOTAL * 100 / (100 + RATE) 

VAT = TOTAL * RATE / (100 + RATE) 

These can be implemented using M*/ to multiply the gross figure by the 

appropriate ratio. The definitions GOODS and VAT below do this taking the 

gross value as a stack input. This is not quite good enough for tax 

purposes, however, because of the rounding which takes place. VAT on a 

purchase is generally consistently rounded either up or down, usually 

down. This means that w'hen calculating back from an inclusive total the 

figures for GOODS and VAT may not add back to the original figure. The 

results are therefore corrected by adjusting the GOODS value appropri¬ 

ately. balance takes care of this leaving the correct GOODS and VAT 

figures on the stack. The VAT rate is set to 15% with the constant rate. 

( Process single item ) 

15 CONSTANT RATE ( % VAT ) 

: GOODS ( tot-gds) 100 DUP RATE + M*/ ; 

: VAT ( tot—vat) RATE DUP 100 + M*/ ; 
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: BALANCE ( tot— vat,gds) 2DUP >R >R 2DUP 

VAT 2SWAP GOODS 

20VER 20VER D+ 

R> R> D< M+ ; 

: PROCESS ( tot — ) 2DUP ITEMS GROSS 2! 

BALANCE ITEMS NETT 2! ITEMS TAX 2! 

Nett Value: " ITEMS .NETT 

Taxed: " ITEMS .TAX ; 

A batch of items is processed by placing the above routines inside a 

begin...WHILE...REPEAT structure. The exit condition for the loop is when 

the batch is full - when 10 items have been added - or when a negative 

number is entered as a gross value (allowing premature exit for short 

batches): 

( Process one batch ) 

: +T0TAL ( addr,n—) SWAP >R TOTAL DUP 23 

R> 23 D+ ROT 2! ; 

: +T0TALS ( —) ITEMS DUP NETT 0 +T0TAL 

DUP TAX 1 +T0TAL 

GROSS 2 +T0TAL ; 

: ROOM ( —f) ITEMS 11 < ; 

: BATCH ( —) CLEAR 

BEGIN ENTER 

DUP 0< NOT ROOM AND 

WHILE PROCESS 

+T0TALS +ITEM 

REPEAT 2DR0P .BATCH ; 

The routine +total adds the double number contents of a given address 

into the batch total specified by the top stack item. The batch totals are 

assigned as follows: 



0 TOTAL -NETT value 
1 TOTAL -TAX value 
2 TOTAL -GROSS value 
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Successive batches of figures are processed by the definition RECKON, 

which first zeros the grand totals and sets the arithmetic to two decimal 
places of precision. After each batch is processed the grand totals are 
updated and displayed. The batch totals are added into the corresponding 
grand totals by +grand which uses the index of a DO... LOOP to access the 
correct elements in each of the arrays. It should be noted that the address 
of the grand total is kept on the return stack while the addition is 
performed, and that during this time the loop index cannot be accessed 
since it is no longer the top item on the return stack. At the end of each 
pass through the loop in reckon the user is queried as to whether to 
continue by enough, which returns a true flag if no further batches are to 
be processed. This routines ignores all keys other than Y or N, The flag is 
generated on exit from the loop by the test ‘N’ = which generates the truth 
condition governing exit from the begin...until structure: 

( Update Grand Totals ) 

: +GRAND C —) 3 0 DO I TOTAL 23 

I GRAND DUP >R 23 D+ R> 2! 

LOOP ; 

( Process batches ) 

89 CONSTANT 'V! 

78 CONSTANT 'N' 

: ENOUGH ( -f) Process another batch? ( Y or N )" 

BEGIN KEY DUP 'Y1 = 

OVER 1N’ = OR NOT 

WHILE DROP 

REPEAT 'N! = ; 

: RECKON ( —) 0GRAND 2 PLACES 

BEGIN BATCH 

+GRAND .GRAND 

CR CR ENOUGH 

UNTIL ; 
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10.1 Virtual memory 

You should already be using floppy disks to store your programs, and may 

have noticed that listing out source screens does not always demand a disk 

access. This is because information held on the disk is always moved into 

memory before you can use it, so that if for instance you type: 

10 LIST <RETURN> 

10 LIST <RETURN> 

screen number 10 of the disk will already be in memory by the second 

LIST, and there is thus no need to look at the disk again. In fact Forth 

always treats the disk as if it resided in ram. This use of disk storage is 

known as virtual memory, and the process of moving sections of memory to 

and from the disk is traditionally called paging. 

So far we have used the word ‘screen’ when referring to areas of disk 

memory. These are each 1024 characters or bytes on nearly all Forth 

systems. At a more fundamental level, when we are concerned with 

storing other information apart from programs on disk, we talk of 

‘blocks’. The size of these varies between Forth implementations, but 

usually they are the same size as an editing screen - that is 1024 bytes. 

Forth 79 systems contain a constant called B/BUF which should yield the 

system buffer length. 

The Forth memory map in Chapter 4 showed an area at the top of 

memory called the disk buffers. This is especially reserved for holding 

information from the disk. Every Forth system has at least two (usually 

four) IK buffers each of which can, of course, hold one disk block. 

The heart of Forth’s disk handling is the word block. It expects a disk 

block number on the stack and returns the start address of one of the 

buffers. In between it takes care of any disk access necessary. The exact 

action of BLOCK is shown in flowchart form in diagram 10.1. 

Its action can be investigated by using it to call up a selection of blocks 

from disk and typing out the resulting address as in: 

10 BLOCK U. <RETURN> 

11 BLOCK U. <RETURN> 

etc. 
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You should find that using block in this way yields a cyclic repetition of a 

short sequence of numbers. These are the start addresses of your disk 

buffers. You can check that the information from the disk is indeed in 

memory by typing out the first line of a block whose contents are known: 

10 BLOCK 64 TYPE <RETURN> 

As you may have guessed this is the essence of the Forth word index which 

could be defined as: 

: INDEX ( Low,high —) 1+ SWAP 

DO CR I DUP . 

BLOCK 64 TYPE 

LOOP ; 

block not only reads in the required block but also makes it current. On 

most Forth systems including Forth ‘79 and FIG Forth implementations 

the current block number can be found at the address pointed to by the 

contents of the variable PREV. You can investigate this by keying in: 

10 BLOCK . < RETURN > 

PREV @ . < RETURN > 

PREV @ @ . <RETURN > 

PREV in fact contains an address two bytes before the start of the buffer 

containing the current block. Put another way, the number of the block in 

any particular disk buffer can be found two bytes before its start address. 

Again this can be investigated with the following: 

10 BLOCK 2- @ . <RETURN> 

Note that PolyForth systems use a rather different system involving an 

array of block numbers beginning at PREV. In this case the current disk 

block can be found with: 

PREV DUP @ + 2+ 2+ @ . <RETURN> 

The flowchart of block shows that it will write back to disk blocks that are 

updated if it is necessary to free a buffer. The current block can be marked 

as updated using the word update, which has no effect on the stack. 

update acts on the address we were investigating above. On systems other 

than PolyForth the block number is simply turned negative using negate: 

: UPDATE PREV @ DUP @ ABS NEGATE SWAP ! ; 

Note the abs ensures that a block is never un-updated by a second negate! 

PolyForth systems have a similar action but in this case the sign bit of the 

block number is set. The difference between these actions can be demon¬ 

strated by running the following definitions of negate and SET: 
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HEX 

: NEGATE ( n—n) 1- FFFF XOR ; 

: SET ( n—n) 8000 OR ; 

DECIMAL 

The important thing to remember is that any block marked by UPDATE will 

be written to disk at some later point by BLOCK. It is not written down 

immediately, however, so the new contents will be lost if you turn your 

computer off before the relevant disk buffer is next used. To be sure that the 

contents of all updated buffers are written back to disk immediately you can 

use the word save-buffers (or flush in PolyForth). Alternatively the 

word empty-buffers does just what you would expect - clears the disk 

buffers regardless of whether they have been updated. In this case any new 

information in them will be lost forever. 

Part of the action of block, that of allocating a buffer to a disk block, is 

performed by the word buffer. This takes care of writing back any 

appropriate updated block, but does not actually read the new block from 

the disk. It can thus be used to allocate a buffer area for usage not necessarily 

concerned with disk I/O. 

Words introduced in this section: 

B/BUF ( ~n) 

Forth ‘79 constant. Yields the length in bytes of each disk block. 

block ( n-addr) 

Expects a block number on the stack. If the block is already in a buffer 

leaves the start address of the buffer. If not finds the least recently used 

buffer, writes the contents back to disk if updated, reads the new block into 

the freed buffer, and leaves the address of the buffer on the stack. Makes the 

block number current. 

UPDATE 

Marks the current disk block as updated. 

SAVE-BUFFERS 

Immediately writes all updated disk blocks in the buffers down to disk. 

FLUSH 

PolyForth word for save-buffers. 

EMPTY-BUFFERS 

Clears all disk buffers without writing any information back to disk even if a 

block has been marked as updated. 
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buffer ( n-addr) 

Used in block. Expects a block number on the stack. Finds the least 
recently used buffer, writes the contents back to disk if updated, and leaves 
the address of the buffer on the stack. Makes the block number current. 
Does not read in any information from the disk. 

10.2 Writing to disk 

We have discussed the main Forth words concerned with disk access, and in 
this section we will be using these alongside words you already know to 
organize simple messages on the disk. First you should insert a clean disk 
into your drive (or format one if necessary) to ensure that no source is lost. 
Edit the programs which follow onto blocks 10 to 20 so that blocks 30 to 40 
can safely be used for testing. We want two main words. The first will put a 
message onto the disk in the position specified and give it a name. The 
second will retrieve the message according to arguments left by the execu¬ 
tion of that name. 

For the moment we will view a disk block in much the same way as the 
editor does - as 16 lines of 64 characters each (assuming a 1K block size). In 
this way each of our messages will take up one line. The position of a 
message on the disk can thus be represented as two numbers - a block 
number and a line number. 

In order for the following programs to work you will need a definition for 
the word 2CONSTANT, which operates just like constant but with two 
numbers (or a double number) as a value. We will be discussing the 
technique used for this in more depth later in the book. For now you should 
create and test the folllowing: 

: 2CONSTANT ( d~) CREATE , , 
DOES> ( -d) 2(a ; 

If your system does not include 2@ (called D® on some systems) a definition 
can be found in Chapter 8. The above word will not work on FIG systems, 
where the following will achieve the same result: 

: 2CONSTANT ( d~) <BUILDS , , 
DOES> ( -d) 2@ ; 

If we are accessing areas of disk by block number and line number we will 
need a program to read in the appropriate block and calculate the actual 
address of the line we want: 

: ADDR (blk,line-addr) 64 * SWAP BLOCK + ; 

All Forth disk handling involves this kind of technique. To specify any 
particular part of the disk we use two numbers, a block number and an 
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offset into the block. A routine such as the one above is then created and 
used whenever information is transferred to and from the disk to ensure that 

the correct block number is in memory. 
The program which puts our 64 character messages onto the disk must 

perform two functions. It will expect a block number and line number on 
the stack. First the message itself must be placed in the desired place on the 
disk; and secondly it must create a new word - which we can give an 
appropriate name - to retrieve the original block and line number so that the 
message can be subsequently located. The latter will be taken care of by 
2CONSTANT, which we will include at the end of our word. The definition 

looks like this: 

: CALL-MSG" ( blk,Line—) 

20UP ADDR ( bLk,Line,destination address) 

DUP 64 BLANK ( clear Line in disk buffer) 

>R ( save dest address on return stack) 

34 WORD ( look ahead for quote) 

COUNT ( count of string moved to HERE) 

R> ( retrieve destination address) 

SWAP ( source addr, dest addr, count) 

CMOVE UPDATE ( --blk,Line) 

2C0NSTANT ; 

This word can be used as in: 

30 0 CALL-MSG” MESSAGE TEXT” TEST <RETURN> 

in which case executing the word test should leave a zero on the top of the 
stack with 30 underneath it. If you then list out block 30 you should find 
that the words ‘MESSAGE TEXT’ appear on line 0. 

Having already defined the word addr to convert a block number and 
line number to a buffer address it is a simple task to retrieve the text pointed 
to by the arguments left by test with the following: 

: MESSAGE ( blk,line-) ADDR 64 -TRAILING TYPE ; 
TEST MESSAGE <RETURN> 

This technique is very similar to the way that many Forth systems arrange 
their error messages. When you are using it bear in mind that the maximum 
block number allowed will depend on the capacity of your disk drive, and 
that block 0 is sometimes not available for update. 

10.3 Simple filing 

The messages we put onto the disk in the last section were all very well, but 
there are many more effective ways to store information. The first case we 
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shall look at is concerned with saving streams of byte data. It might be used 
for simple data acquisition, where the data source would probably be some 
peripheral connected to the computer through one of its ports. We will be 
using key to simulate this, so that we will in fact be saving a stream of ACSII 
codes. 

For convenience we will define the first block available for data storage as 
a constant: 

30 CONSTANT START 

This allows us to define the following word which gives an address 
representing the appropriate position on the disk for any byte offset above 
the start of our storage area. 

: ADDR ( offset-addr) 1024 /MOD START 4- BLOCK + ; 

Note the use of /MOD in this word. The quotient returned will represent a 
block offset above start, whilst the remainder is the byte offset into the 
block. A simple DO..LOOP can now be used to put data into our storage 
area: 

: GET ( n~) 0 DO KEY I ADDR C! 
UPDATE 
LOOP ; 

where GET expects a number on the stack representing how many keys¬ 
trokes are desired, as in: 

20 GET <RETURN> 

To test this properly you will need to try numbers greater than 1024 so that 
the data stream covers more than one block. This will demand a large 
number of keystrokes, and you may prefer to replace the word KEY with a 
constant ASCII value (such as 65 for ‘A’) and just fill the blocks with it. 

To retrieve the data two definitions are used, one to look at the contents of 
a particular byte offset: 

: SEE ( n~) ADDR C@ . ; 

and the other to display a section of the data stream given the beginning and 
end offsets: 

: SHOW ( low,high-) 1+ SWAP 
DO I SEE LOOP ; 

Generally we need to store information on the disk in a more structured 
form than this. Suppose we wanted to keep the names, telephone numbers 
and addresses of all our friends on the disk. We can think of the disk file just 
as we might an address book, and in it we keep records of a number of 
people, each of which includes a number of separate pieces of information. 
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We call the entry for each person a record and the pieces of information 
contained in them a field (see diagram 10.2). 

FILE 

RECORD RECORD RECORD RECORD 

f 1 f 1 f 1 f 
E | E | E | E 
L ' L 1 L 1 L 
D | D 1 0 | D 

1 1 I 
i 1 1 
1 1 1 

1 1 1 
1 1 1 
1 1 1 

1 1 1 
1 1 1 
1 1 1 

Diag 10.2. Files, records and fields 

In order to simplify matters we will decide beforehand how many records 
our file is allowed to contain,the length of each record, and the maximum 
byte count of each fiield. We byte count of each field. We will reserve one 
block of the disk for a directory, a sort of index to all the records on the file. 
This consists of a byte array where each byte represents one record, so that 
its length depends on the maximum records allowed. Each record is initially 
available for information and its directory entry contains a zero. To enable 
us to retrieve a record by the first character of the person’s name, we will 
store its ASCII value in the directory when the record is used. 

The routines to access the directory are thus defined in terms of the 
directory block and the maximum available records: 

30 CONSTANT DIRECTORY 

100 CONSTANT MAX-RECS 

: ENTRY ( recno—addr) DIRECTORY BLOCK + ; 

: STATUS ( recno—char) ENTRY C3 ; 

: DELETE ( recno—) ENTRY 0 SWAP C! ; 

: NEW-FILE DIRECTORY BLOCK MAX-RECS ERASE UPDATE ; 

: ADD ( char—recno) 1 ( default flag) 

MAX-RECS 0 DO I STATUS NOT 

IF DROP I ENTRY C! 

I 0 LEAVE 

THEN 

LOOP 

IF CR Fi le full !" CR ABORT 

THEN ; 
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The word add above expects on the stack the ASCII code for the first 
character of the name to be stored. The word abort will immediately cause 
control to be passed back to the keyboard if the file is full. It also has the 
effect of clearing the stack and is thus often used to escape from this kind of 
error condition. Note that upon returning from an abort Forth does not 
issue its ‘ok’. 

Next we must decide how many bytes each record and its constituent 
fields will take up on the disk. For simplicity it is best to choose a record 
length which will divide evenly into the block length so that an exact 
number of records will fit onto each block. 

128 CONSTANT REC-LEN 

25 CONSTANT SURNAME 

25 CONSTANT GIVEN 

14 CONSTANT TEL 

64 CONSTANT ADDRESS 

The file itself will begin on the block above the directory: 

: FILE-START ( -blk) DIRECTORY 1+ ; 

so that the start address of each record can be calculated thus: 

: ADDR ( recno—addr) 

B/BUF REC-LEN / ( records per block) 

/MOD ( —recs Left, blks) 

FILE-START + BLOCK 

SWAP REC-LEN * + ( add byte offset) ; 

To add a record we first need the surname of the person to be entered, since 
the first character of this is to be placed in the directory. We will thus use 32 
WORD, and follow our keyword with the required name. A check is included 
to ensure that some name is actually entered. The word GET-NAME takes 
care of all of this and also moves the surname into the appropriate record. It 
leaves on the stack the address in the disk buffer where the next field is to be 

placed: 
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: GET-NAME ( —addr) 

32 WORD COUNT ?DUP 

IF OVER Ca ADD 

ADDR SURNAME 

2DUP BLANK 

2DUP + >R 

DROP SWAP 

CMOVE UPDATE 

R> 

ELSE CR No name !" 

CR ABORT 

THEN ; 

The address left by this word can now be used to enter each field in turn with 

the following: 

: PUT ( addr,n--addr) 

2DUP BLANK ( erase field) 

2DUP EXPECT ( enter information) 

+ ; ( increment buffer address) 

: FILE GET-NAME 

CR Given name ?" CR 

GIVEN PUT 

CR Telephone no ?" CR 

TEL PUT 

CR Address ?" CR 

ADDRESS PUT DROP ; 

This should now add a record to your file and prompt you for information if 

used as in: 

FILE OLNEY <RETURN > 

A similar technique can be used to display information, first for a single 

record number: 
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: SHOW ( addr,n—addr) 

2DUP -TRAILING TYPE + ; 

: DISPLAY ( recno—) 

CR Record number: " 

DUP . ADDR 

CR Surname: " 

SURNAME SHOW 

CR Given name: " 

GIVEN SHOW 

CR Telephone no: " 

TEL SHOW 

CR Address: " 

ADDRESS SHOW DROP ; 

This last word expects a record number on the stack, which is not a 
particulary convenient way to retrieve our information. Having saved the 
first letter of the surname in the directory, however, we can define the 
following to display all entries under a given letter: 

: ONE-LETTER ( chr—) 

MAX-RECS 0 DO I STATUS OVER = 

IF I DISPLAY THEN 

LOOP DROP ; 

: LETTER 32 WORD 1+ C3 ONE-LETTER ; 

used as in: 

LETTER O <RETURN> 

A similar word displays all entries on the file (in no particular order): 

: ALL MAX-RECS 0 DO I STATUS 
IF I DISPLAY THEN 

LOOP ; 

Words introduced in this section: 

ABORT 

Halts execution of the program and passes control to the Forth interpreter. 
Clears both parameter stack and return stack. Does not print ‘ok’ on return. 



11 Exploring the 
Forth system 

11.1 The Forth interpreter 

The time has come to look more closely at the way the Forth system 

operates. On power up Forth immediately enters an interpretive loop, 

which monitors the keyboard for input, and on receipt of a carriage return 

attempts to interpret it. The name of this routine is QUIT and a definition 

of it might be: 

: QUIT BEGIN QUERY INTERPRET AGAIN ; 

QUERY awaits up to 80 characters of input (or until a carriage return) and 

transfers the input string to the input message buffer. As you may have 

guessed it uses expect to achieve this, interpret attempts to interpret all 

the words in the buffer as valid Forth. When a program executes ABORT 

both the return stack and parameter stack are reset and execution begins 

again with quit, quit itself may be called from within a program to return 

control to the interpreter, but unlike abort will not clear the parameter 

stack. 

INTERPRET acts on each word in the input string in turn, first attempting 

to find a matching name in the Forth dictionary, and then if no match is 

found trying to convert the string to a number according to the current 

base. If a word is encountered which is neither in the dictionary nor a valid 

number then it aborts with an error message and quit executes again. The 

routine which conducts the dictionary search for INTERPRET is FIND 

(79-Standard) which returns a true value if the next word in the input 

stream is found in the dictionary, and false if it is not. FIND uses 32 WORD 

to look ahead in the input and transfer the string to HERE before starting 

the search. Should the string not be found it is conveniently placed for 

number to attempt conversion. Should number faii in the attempt it 

executes abort and interpret terminates. It is word which makes the 

decision as to whether the input is to be taken from the disk buffers or 

from the input message buffer. This decision is based on the contents of a 

variable called BLK, set to zero while keyboard input is in progress, word 

begins scanning for a space (or other delimiting character) at an address 

given by adding the contents of a character pointer to the start address of 

the input buffer. The character pointer is in a variable called >IN (IN in 
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FIG Forth). When word terminates it leaves the contents of >in incre¬ 

mented by the length of the string transferred to here, plus any leading 

spaces there may have been. When interpret begins execution the con¬ 

tents of >in are set to zero. A definition for interpret could thus be 

written: 

: INTERPRET 0 >IN ! 

BEGIN FIND ?DUP 

IF EXECUTE 7STACK 

ELSE HERE NUMBER 

THEN 

AGAIN ; 

The word execute uses the true value left by find to execute the routine 

associated with the name just found in the dictionary. ?STACK tests the 

stack for underflow after the word has been executed, and aborts with the 

stack empty error message if necessary. There are two possible exits from 

INTERPRET if erroneous input is encountered, one through the ABORT in 

number and the other through pstack. There is, however, no immedi¬ 

ately apparent exit from interpret if all input is correct. The usual 

method of exit from interpret makes use of the ‘null’ character (ASCII 

0), which EXPECT appends to the input string when QUERY executes. The 

null represents the name of a routine in the dictionary, and is thus found 

by find and executed. This routine activates a word called exit which 

abandons one level of execution causing a jump out of interpret and 

back to QUIT. EXIT may be called explicitly in a program and its effects can 

be seen in the following demonstration: 

: TEST Returning " EXIT abandoned" ; 

TEST <RETURN> Returning ok 

: TEST TEST to outer Level" ; 

TEST Returning to outer Level ok 

Words introduced in this section: 

QUERY 

Inputs a string of up to 80 characters from the terminal to the input buffer. 
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INTERPRET 

Attempts to interpret the string of characters in the input buffer, 

delimited by a null (ASCII 0). 

>IN ( —addr) 

System variable containing the characters offset into the input buffer 

(called in in FIG Forth). 

QUIT 

Returns control to the outer interpreter without clearing the parameter 

stack or printing any message. 

EXIT 

Terminates the colon definition currently executing and returns to the 

next outermost level of execution. 

FIND 

Returns the compilation address (cfa) of the next word in the input 

stream. If the word is not found leaves a zero. 

11.2 Dictionary structure 

Since the Forth system is so heavily dependent on dictionary searches for 

both interpreting and compiling, the dictionary is structured in a way 

which allows it to be searched very efficiently. The Forth dictionary like 

other dictionaries consists of a list of named entries. These entries; the 

colon definitions, constants and variables, are stored in the order in which 

they are defined, the oldest being at the bottom of the dictionary and the 

latest at the top. The dictionary entries are of variable length and may be 

interspersed with unnamed regions of data and code. The entries are held 

in the form of a ‘backward linked list’, each entry containing a pointer to 

the previous entry - ending with the first entry in the dictionary. The 

pointers which link the routines together are automatically set up by the 

compiler. 

The dictionary entries are themselves structured for simplicity of use by 

the system. Each consists of two main parts; the head which contains 

identity information, and the body which contains data relevant to its 

execution. The head may be subdivided into three parts; the name field 

which holds the name, the link field containing the pointer to the previous 

entry, and the code field which specifies the actual routine to be executed. 

Dictionary names can be up to 31 characters long, the length being 

specified in the lowest 5 bits of a count byte which precedes the name. 

This is the start address of the name field and is called the name field 

address or nfa. The nfa of the most recent definition can be returned by the 

Forth-79 word latest: 
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: LAST? ( —) LATEST COUNT 31 AND TYPE ; 

LAST? <RETURN> LAST? ok 

: XXX ; <RETURN> 

LAST? <RETURN> XXX ok 

The structure of an entry in a typical Forth dictionary is shown in diagram 

11.1 and an overall dictionary structure in diagram 11.2 

Name Field ink Field-*>f«Gxie Field Parameter Field -*-i 

Low 
i Previous Entries Name I Link Code address Body 

Name Field Address 
NFA 

Link Field Address _ 
LFA 

Code Field Address 
CFA ~ 

Parameter Field Address 

PFA — 

High 
memory 

Diagram 11.1. Structure of a dictionary header 
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I I 1 

1 1 

i 1 

1 1 
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1 

1 

I 1 

1 1 

1 1 

1 
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1 

1 1 

1 1 

1 1 

1 

1 

1 

1 1 

1 1 

1 1 

1 

1 

1 

Diagram 11.2. Dictionary Chain Structure 

As you can see the link field of an entry points to the nfa of the previous 

entry. Dictionary searches begin with the latest definition and work back 

through the list until an entry whose link field contains zero is encoun¬ 

tered. This signals that the lowest entry has been reached and terminates 

the search. The definition below displays the names of all the definitions in 

the Forth vocabulary, begining with the latest. 



Exploring the Forth system 171 

: VLIST LATEST ( ---nfa) 

BEGIN COUNT 31 AND 

2DUP TYPE 

+ ( -Lfa) a ( Link) 

?DUP 0= ( bottom?) 

UNTIL ; 

The link field address (lfa) is calculated by adding the length of the name to 

the nfa plus one. 

The cfa specifies the start of the code field, which points to a machine 

code routine which will be executed called the ‘run-time’ code. It is the cfa 

that find returns when a word has been found in the dictionary. The 

primitive execute used in the defintion of interpret takes the cfa of the 

definition to be executed as a stack parameter, and hence the true values 

from find were conserved using ?DUP. Here is another example: 

: PERFORM ( —) FIND ?DUP IF EXECUTE 

ELSE .” Can’t ” 

THEN ; 

If you examine the contents of the code field of a number of colon 

definitions using CODE? you will find they all contain the same value. 

: CODE? FIND ?DUP IF @ U. THEN ; 

The number displayed is the address of the run-time code, and this means 

that all colon definitions have the same run-time code or behaviour. 

Similarly all names defined using variable have common run-time 

behaviour but one that is different from a colon definition. Thus words 

defined using variable and : and constant represent three classes of 

dictionary entry distinguishable by their run-time behaviour. Chapter 12 

shows how new classes of word with distinctive run-time behaviour may 

be added to the system. The practice of using run-time routines which are 

common to a number of procedures is a major contributor to Forth’s 

simplicity and flexiblity. One other class of word will be present in the 

Forth kernel. These are code definitions and contain a machine code 

routine in the body of the definition. In these definitions the code field 

points straight to the pfa of the word, i.e. the cfa + 2. Included among the 

code definitions will be most of the stack manipulation and 16-bit arith¬ 

metic operators, and all the routines which deal with input and output. 

The body of a definition consists of a single parameter field. In the case of 

colon definitions this is a list of addresses which are used when the word 

executes. These are the code field addresses of all the routines called by the 

definition. The parameter field of an assembler definition contains 

machine instructions and addresses to be executed directly by the proces¬ 

sor. New' assembler definitions can be added to the dictionary using the 



172 Exploring the Forth system 

defining word CODE followed by the name. Instructions for doing this 

should be contained in your Forth system manual. 

The Forth system is designed to spend most of its time executing colon 

definitions, and employs a software device called the ‘address interpreter’ 

or ‘inner interpreter’ to manage this. The task of the address interpreter is 

to execute a list of routines. It uses a 16-bit pointer called the ‘interpretive 

pointer’ to hold the address of a cell within the parameter field of a colon 

definition where the cfa of the next routine to be executed can be found. 

On start up, the interpretive pointer is loaded directly with the pfa of quit 

and the address interpreter is activated. In the definition of quit given 

above the first cell in the parameter field would contain the cfa of QUERY 

The address interpeter uses a second pointer, usually called the W- 

register, to hold an address where the start address of the machine code 

routine to be executed will be found. Each time the address interpreter 

acts the W-register is loaded with the contents of the address held in the 

interpretive pointer. The first value to be loaded when quit executes is 

therefore the cfa of query. Before going off to execute query the address 

interpreter increments the interpretive pointer by two so that on return 

from QUERY it will be pointing to the cell containing the cfa of INTERPRET. 

The address interpreter then executes the next routine as indirectly 

pointed to by the W-register, and since query is a colon definition the 

run-time code for a colon definition is executed. The address interpreter 

must now pass along another list of code field addresses, so the colon-code 

does three things. It first saves the current contents of the interpretive 

pointer on the return stack. It then copies the contents of the W-register 

into the interpretive pointer and adds two so that it points to the pfa of the 

current colon definition. Lastly it activates the address interpreter and 

execution continues. The address interpreter now begins working its way 

through the list of code field addresses in QUERY, which may themselves 

point to colon definitions. Each time a new colon definition is entered 

another value is pushed onto the return stack. Eventually a code routine 

will execute which is not colon-code and the address interpreter will be 

allowed to run to the end of a definition. All machine code routines must 

return to the address interpreter if the system is to operate correctly and 

the Forth assembler will contain a word which compiles the necessary 

code at the end of a code definition. It is usually called next. 

The final cell in the parameter field of a colon definition always points to 

EXIT, whose cfa is often compiled by a semi-colon. EXIT is a code routine 

which removes the top value from the return stack and loads it into the 

interpretive pointer before activating the address interpreter. This takes 

execution back to the next outer level of definition. Thus on reaching the 

end of QUERY, QUIT EXIT restores the interpretive pointer so that it again 

points to the cell containing the cfa of interpret. The address interpreter 
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now loads this into the W-register, and increments the interpretive pointer 

so it points to the cfa of again. 

As you can see the address interpreter is the engine of the Forth system 

and is constantly humming away in the background. You will be glad to 

hear, however, that its actions are completely transparent to the pro¬ 

grammer except when abusing the return stack. 

Words introduced in this section: 

code (NAME) 

Begins compiling an assembler definition with the name that follows. 

11.3 Vocabularies 

One of the most unusual features of Forth is its use of separate named 

vocabularies, each containing a sub-set of the dictionary. The principal 

vocabulary is forth, which contains nearly all the definitions introduced 

in this book. There are generally two other resident vocabularies, called 

editor and assembler. The Forth system is concerned with two 

vocabularies at any given time. They are the current vocabulary and the 

context vocabulary. The current vocabulary is the one into which new 

definitions are added, whilst the context vocabulary determines which 

words are interpreted. The vocabularies themselves are linked lists within 

the dictionary, with the bottom entry linking back to the forth vocabu¬ 

lary (see diagram 11.3). 

^Vocabulary►] ^Vocabulary*) |-«-Head »|« Head-»-i-«-Head-H 

Forth Vocab 1 Vocab 1 Forth Vocab 2 Vocab 1 Forth Vocab 2 

Diagram 11.3. Vocabulary Chains 

When a dictionary search is performed it starts with the latest word in 

the context vocabulary and works back towards FORTH. If the word is not 

found in the context vocabulary the search proceeds back though FORTH. 

No other vocabularies are searched since they do not form part of the same 

chain. This can be demonstrated by typing: 
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FORTH VLIST <RETURN> 

ASSEMBLER VLIST <RETURN> 

EDITOR VLIST <RETURN> 

and observing the different results. 

The system uses two variables, CURRENT and CONTEXT as pointers to 

the base of the current and context vocabularies. A new vocabulary may be 

defined in the following way: 

VOCABULARY GERMAN 

vocabulary is a ‘defining word’ similar to variable and constant. It 

creates a named entry in the current vocabulary (usually forth) whose 

parameter field contains the nfa of the latest definition in the defined 

vocabulary. Initially this will be the nfa of the vocabulary itself. When the 

vocabulary is executed the run-time code places its parameter field address 

in CONTEXT. When the dictionary is searched by a word such as FIND the 

search does not begin with the address returned by LATEST but with that 

returned by 

CONTEXT @ @ <RETURN> 

New definitions may be added to a vocabulary by making it current. The 

word definitions copies the contents of context into current so that 

by executing 

GERMAN DEFINITIONS <RETURN> 

we have first made german the context vocabulary and then made it 

current. The variable CURRENT now contains the pfa of GERMAN. When a 

defining word (such as colon) is used to create a dictionary entry, the nfa 

returned by CURRENT @ @ is used to make up the link. Try the following: 

CURRENT 5) a U. <RETURN> 

: GREET Guten Abend" ; 

CURRENT 3 3 U. <RETURN> 

FORTH DEFINITIONS 

CURRENT 3 3 U. <RETURN> 
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: GREET Good Evening" ; 

CURRENT 3 3 <RETURN> 

One definition has been added to each of the GERMAN and FORTH 

vocabularies. The desired greeting may now be selected by specifying the 

context for interpretation. 

GREET <RETURN> Good Evening ok 

GERMAN <RETURN> 

GREET <RETURN> Guten Abend ok 

FORTH <RETURN> 

The use of vocabularies gives us a method of attaching different meanings 

to a word, according to the context in which it is used. It is not customary 

to define a large number of vocabularies within a single application since 

this can be very confusing. It is more normal to define most of the words in 

forth and have only outer level words in the application vocabulary. 

Thus the vocabularies may be used to distinguish one application from 

another, and to allow application specific languages be constructed. 

Words introduced in this section: 

VOCABULARY (NAME) 

Create a new vocabulary named (NAME) which becomes the context 

vocabulary upon execution. 

CONTEXT ( —addr) 

System variable pointing to the vocabulary to be searched by the inter¬ 

preter. 

current ( —addr) 

System variable pointing to the vocabulary where new definitions are to be 

placed. 

11.4 Vectored execution 

Another method of changing the context of a word is known as vectored 
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execution. This is an extremely useful technique in programming and 

particularly easy to implement in Forth. The method uses a variable to 

hold the address of a definition to be executed. Execution is performed by 

an outer definition which passes the contents of the variable to EXECUTE. 

In this way by changing the contents of the variable, the execution 

behaviour of the outer calling word can be altered. The address actually 

placed in the variable varies between one programming system and 

another. Some programmers like to use the cfa of the word to be executed, 

whilst others prefer the pfa. The latter method is used here. 

Indirect execution is most often used in coding those parts of an 

application which may have to be reconfigured. For example if two 

versions of a program only differed in the language of the messages to the 

user, the prompt routines might be vectored. Vectored execution may be 

performed through a word @EXECUTE which is resident on some systems. 

It takes as a parameter the address of an execution vector, i.e. a cell 

containing the address of the routine to be executed. Execution of the 

routine is only attempted if the contents of the vector are non-zero. A 

definition of <s execute is 

: (5 EXECUTE ( addr—) @ ?DUP IF 2- EXECUTE THEN ; 

The pfa of a routine is returned by the word ’ (‘tick’) which conducts a 

dictionary search for the word that follows in the input stream, and aborts 

if the word is not found. This may be used to load an execution vector. For 

example the routine greet must print the message ‘Good Evening’ in 

English or German depending on where the software is to be used. The 

same coding for GREET can be used in both versions of the program if an 

execution vector is used. 

VARIABLE ’MSG 

: GREET ’MSG ©EXECUTE ; 

The routines which actually print the messages can be defined later as 

separate words and the pfa of the appropriate routine loaded into the 

vector on each version. 

( German version) 

: .GERMAN Guten Abend " ; 

.GERMAN 'MSG ! 

GREET <RETURN> Guten Abend ok 
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( English version) 

: .ENGLISH Good Evening " ; 

' .ENGLISH 'MSG ! 

GREET <RETURN> Good Evening ok 

The advantage of this method is that any programs which use greet are 

unaffected by this change and may therefore be coded before the actual 

printing routines have been specified. This means that programs can be 

written and tested before the details have been worked out and then later 

configured to a specific purpose. 

As a more complex example consider a program to control menu type 

selection of a number of different functions within an application. The 

program prints out a title and list of numbered options describing the 

main functions in the application. It then enters a selection loop where the 

user selects an option by pressing an appropriately numbered key. The 

selected function is then executed, and the selection program re-entered 

for another choice. The program may be broken down into the following 

functions: 

DISPLAY ( —) 

Displays the menu heading and list of numbered options. 

choose ( —n) 

Waits for a numeric keystroke and returns an option number in the range 

0-9. 

ALLOWED ( n—f) 

Takes an option number and returns a true flag if it falls in the allowed 

range. 

SELECT ( n—) 

Takes an option number and executes the associated function. 

The coding of final control program will look like this: 

: SELECTION ( —) DISPLAY 

BEGIN CHOOSE DUP ALLOWED 

IF SELECT DISPLAY 

ELSE DROP 

THEN 

AGAIN ; 
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We can begin constructing the components of SELECTION without con¬ 

cerning ourselves with details of the functions and their descriptions by 

making use of execution vectors. The word cells defined in Chapter 9 has 

been used to create a pair of indexed vectors each containing functions 

cells indalised to zero: 

( Execution vectors ) 

VARIABLE HEAD 

4 CONSTANT FUNCTIONS 

FUNCTIONS CELLS OPTIONS 

FUNCTIONS CELLS CHOICES 

( Indexed vectors ) 

: OPTION ( n addr) OPTIONS 1+ SWAP 1- 2* + ; 

: CHOICE ( n—-addr) CHOICES 1+ SWAP 1- 2* + ; 

( Display routines ) 

: .HEAD ( —) HEAD 3EXECUTE ; 

: .OPTIONS ( —) FUNCTIONS 1+ 1 

DO I . 

I OPTION 3EXECUTE CR 

LOOP ; 
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: DISPLAY ( -) CR CR .HEAD CR CR .OPTIONS ; 

( Function execution ) 

: SELECT ( n—) CHOICE QEXECUTE ; 

( Selection ) 

: ALLOWED 1 FUNCTIONS WITHIN ; 

: CHOOSE ( —n) BEGIN KEY DUP 48 58 WITHIN NOT 

WHILE DROP 

REPEAT 48 - ; 

OPTION returns the address of the vector to the display routine describing 

the option, while choice returns the vector to the function. All execution 

is performed using (5 EXECUTE. Exit from the closed loop in SELECTION 

can be provided by loading one of the CHOICE vectors with the pfa of EXIT: 

’ EXIT FUNCTIONS CHOICE ! 

On executing SELECTION a set of numbers representing the option 

numbers will be displayed on the left, and the program will await a 

keystroke. Selections 1—3 will cause the menu to display again, selection 4 

causes the program to end, and any other keystrokes are ignored. The 

other vectors may now be loaded up as required. 

: .DUMMY ." Menu Selection Heading" ; 

' .DUMMY HEAD ! 

: .ONE ." Selects first option " ; 

: .TWO ." Selects second option " ; 

: .THREE ." Selects third option 
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: .FOUR Exits selection program " ; 

' .ONE 1 OPTION ! 

1 .TWO 2 OPTION ! 

' .THREE 3 OPTION ! 

: ONE ." First option executed " ; 

: TWO ." Second option executed " ; 

: THREE ." Third option executed " ; 

ONE 1 CHOICE ! 

' TWO 2 CHOICE ! 

' THREE 3 CHOICE ! 

The operation of SELECTION can now be altered at any time simply by 
writing new run-time routines and loading the vectors. SELECTION itself 
need only be recompiled if the value of functions is to be altered. 

The Forth system itself makes use of execution vectors for its I/O 
routines and certain other system functions. The routines expect, type, 

block and buffer are normally vectored because the coding is specific to 
particular peripherals and so they must be recoded each time Forth is 
transported to a new machine. Vectoring these routines minimizes the 
number of changes which need to be made. Another routine commonly 
vectored is the numeric input conversion number. This allows specialized 
input routines to replace the standard one in a particular application. The 
name of the vector for NUMBER (if one exists) should be in your Forth 
system manual along with those of other system vectors. 
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Words introduced in this section: 

’ (NAME) ( — addr) 

Returns pfa of the word that follows. Aborts if the word cannot be found 

in the context dictionary or FORTH. 

11.5 The Forth compiler 

The distinction between the compiler and the interpreter is not as clear cut 

in Forth as in other programming systems. All input is interpreted by the 

interpreter but some Forth words cause compilation to take place when 

they execute. These are called ’compiling words’ and are executed by the 

compiler rather than compiled. The compiler itself is usually a word called 

] which has an indefinite loop structure rather like that of INTERPRET. ] 

distinguishes a word to be executed from a word to be compiled by 

checking one of the unused bits in the count byte of the name field. This 

bit, called the precedence bit, is set if the word is to be executed immedi¬ 

ately by the compiler. Exactly which bit is the precedence bit varies from 

one system to the next, but may be determined as follows. 

: SHOW LATEST C3 .BIN ; 

: TEST ; <RETURN> 

SHOW <RETURN> 

IMMEDIATE <RETURN> 

SHOW <RETURN> 

immediate marks the last colon definition in the current vocabulary for 

immediate execution by the compiler by setting the precedence bit. This 

should be reflected in the results produced by SHOW before and after 

immediate was executed. 

Within the loop strucure ] searches the dictionary for the next word in 

the input stream, and if found tests the precedence bit. If the precedence 

bit is set the word is compiled, otherwise it is executed. If the word is not 

found numeric conversion of the string at here is attempted, and if this is 
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successful the stack value is compiled as a literal value. The code for ] can 

be represented thus: 

: ] ( —) BEGIN FIND ?DUP ( search) 

IF IMMEDIATE? ( test string at HERE) 

IF EXECUTE ( immediate word) 

7STACK ( error if stack underflowed) 

ELSE , ( compile cfa) 

THEN 

ELSE HERE NUMBER ( convert to number) 

LITERAL ( compi le number) 

THEN 

AGAIN ; 

The word immediate? will return a true flag if the precedence bit was set, 

and you will need to consult your system manual to find out how to 

calculate the name field address of a word if you want a definition for it. If 

a word is not found then compilation of the number is achieved using the 

Forth word literal, literal causes compilation of two cells into the 

word being compiled. The second cell contains a value taken from the 

stack at compile time, and the first cell contains the cfa of a routine which 

will return the value to the stack at run time (and skip the interpretive 

pointer over the next cell), literal may be used inside a colon definition 

so that the values compiled as literals may be specified as compile time 

parameters, or from the results of a compile time calculation. Compile 

time calculations may be performed if the compiler is switched off inside a 

colon definition. This is done using the immediate word [ to mark the start 

of compile time operations and ] to reactivate the compiler at the end. 

literal is used to compile the value into the correct position in the 

definition and usually follows immediately after ]. This technique could 

have been used in the definitions of GOODS and VAT in the application at 

the end of Chapter 9: 

15 CONSTANT RATE ( % VAT) 

: GOODS ( tot—gds) 100 [ RATE 100 + ] LITERAL M* ; 

: VAT ( tot—vat) RATE [ RATE 100 + ] LITERAL M*/ ; 

The word [ turns the compiler off by causing it to exit the closed loop. 

The calculation which follows is then performed by the interpreter leaving 

the result on the stack. The compiler is turned on again by ] (which is not 

an immediate word) and the stack value taken as a parameter by literal 

and compiled as a literal immediately. Using this method the constant 

value rate + 100 is computed only at compile time rather than each time 

the program executes. 
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There are two further words in your Forth system which affect the 

action of the compiler. They are called compile and [compile]. 

[COMPILE] is used in definitions to signal that the next word in the 

definition is not to be treated as immediate regardless of whether its 

precedence bit has been set. It is often used to delay the action of a core 

immediate word until the outer (immediate) definition executes. The 

following word, used in a definition, will compile into that definition as a 

literal the square of the number on the stack at the time: 

: SQR, ( n—) DUP * [COMPILE] LITERAL ; 

IMMEDIATE 

: TEST [ A ] SQR, . ; <RETURN> ok 

TEST <RETURN> 16 ok 

COMPILE is also only used in definitions, and affects the word that follows 

it. This time the cfa of the word following is compiled into the dictionary 

when the outer definition executes, rather than compiled into the definiton 

itself. As you might expect COMPILE is generally used in immediate 

definitions. A good example of the use of compile is in the Forth control 

structures. Although the implementation of these varies between systems 

they will always have two phases of activity, at compile time and at 

execution. Generally the word DO leaves an address on the stack at compile 

time for use by loop in constructing a branch. Sometimes it will also leave 

an identifier in case it is not appropriately matched. Upon execution of do 

two values must be moved from the parameter stack onto the return stack. 

The easiest way to achieve this result is to define DO as an immediate word, 

which compiles a seperate execution time routine into any definition in 

which it is used: 

: (DO) SWAP R> SWAP >R SWAP >R >R ; 

: DO ( —addr) COMPILE (DO) HERE ; IMMEDIATE 

Words introduced in this section: 

IMMEDIATE 

Marks the last word defined to be executed when encountered in a 

definiton rather than compiled. 
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compile (NAME) 

Compiles the cfa of the next (non-immediate) word into the dictionary 

when the current definition executes. 

[compile! (NAME) 

Compiles the following word into the current definition even if it is 

immediate. 



12 Classes of words 

12.1 More about variables and constants 

In the previous section you saw how Forth words are constructed in the 

dictionary. Basically they consist of a header containing the word’s name 

(or the significant portion of it); a cell which points to the next definition in 

the dictionary (link field); a cell which contains the address of the general 

code shared by all definitions of that type (code field); and a number of 

cells containing the code specific to the word (parameter field). 

In this section we will be looking more closely at the code field and 

parameter field (and their contents) with reference to different classes of 

words. 

One of the great strengths of Forth as a development and learning tool is 

the ease with which simple programs can be used to investigate the 

workings of the system itself. We will be using the following word to 

check the contents of the appropriate cells: 

: CHECK CR Code field: " 

[COMPILE] ' DUP 2- U. 

Contains: " 

DUP 2- a U. 

Parameter field: " 

DUP U. 

Contains: " 

a U. ; 

The [compile] is necessary on some systems to prevent ’ picking up the 

address of dup, rather than the address of the word that follows check 

when it is executed. It may be redundant in some cases, but it should do 

no harm to include it. 

Let’s use CHECK to look at some colon definitions. First create the 

following words: 

PLUS + ; 

MINUS - ; 

DIVIDE / ; 
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Using these with check as in: 

CHECK PLUS <RETURN> 

CHECK MINUS <RETURN> 

CHECK DIVIDE <RETURN> 

should reveal that the contents of the code field address is the same for all 

three words. It will in fact be the same for all colon definitions, simply 

telling Forth to execute the code which follows in the parameter field. For 

each of the words above the contents of the parameter field address should 

be the code field address of the operator within the definition. Thus plus 
will contain the code field address of +, minus of - and divide of /. You 

can verify this using CHECK: 

CHECK + <RETURN> 

CHECK - <RETURN> 

CHECK / <RETURN> 

Now try a similar investigation of a selection of variables: 

VARIABLE RED 

VARIABLE WHITE 

VARIABLE BLUE 

CHECK RED <RETURN> 

CHECK WHITE <RETURN> 

CHECK BLUE <RETURN> 

Again you should find that the code field contents are the same for all three 

variables, though different from that found with colon definitions. The 

parameter field will contain a zero for all these variables. The code field of 

a variable tells Forth that the action of the word is simply to leave its own 

parameter field address on the stack, and the address on the stack, and the 

pfa contains the actual value of the variable. Thus if you key in: 

20 RED ! < RETURN> 

CHECK RED <RETURN> 

you will find that the contents of the parameter field have changed to 20, 

the new value of the variable RED. 
Now do the same for a selection of constants such as: 
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1 CONSTANT ONE 

2 CONSTANT TWO 

3 CONSTANT THREE 

CHECK ONE <RETURN> 

CHECK TWO <RETURN> 

CHECK THREE <RETURN> 

Yet again the contents of the code field address are common to all con¬ 

stants, and the parameter field contains the value associated with them. 

This time the code field tells Forth that the word is to leave the contents of 

its own parameter field on the stack. 

Words which share a common code field value are said to belong to the 

same class. Thus all variables represent one class of words, and all con¬ 

stants another. 

12.2 Defining words 

In Forth, words used to create other words, such as variable and con¬ 

stant, are called defining words. Each will give a special code field value to 

the words it creates, signifying that they belong to a particular class. One 

of the most useful facilities Forth offers is the ability to create your own 

defining words, with which to build up new classes of words. The key to 

this is a pair of complementary words called CREATE and DOES>. Their 

general form is as follows : 

: DEF-WORD CREATE 

( code to be executed by DEF-WORD) 

D0ES> 

( code to be executed by word created) ; 

The following illustrates how this format is used: 

: CLASS1 CREATE 

Compiling new word in Class 1" 

D0ES> 

Action of word in class 1 with PFA " . ; 

CREATE looks ahead in the input stream and creates a new header in the 

dictionary with the first word it finds. When it is finished the top of the 

dictionary, pointed to by HERE, represents the parameter field address of 
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the new word. The word created will leave this address on the stack when 

it is executed. FIG systems use the word < builds instead of create, 

though its action when used in conjunction with DOES> is exactly the 

same. 
dges> is nearly always used after a CREATE or <builds. It represents 

the beginning of the ‘class code’ for the words to be created. This code 

generally assumes that the parameter field address of the word currently- 

executing is available on the stack. II you create a selection of words with 

CLASSl and execute them you’ll see how this works: 

CLASS1 TOM <RF.TURN> 

TOM <RETURN> 

CLASS1 DICK <RETURN> 

DICK <RETURN> 

CLASS1 HARRY <RETURN> 

HARRY <RETURN> 

Here is a definition of variable using create and does> (remember to 

substitute <buil,ds if create does not exist): 

: VARIABLE CREATE 0 , DOES> ( -addr) ; 

In this case there is no code at all between DOES> and the semi-colon. 

Variables - since all they need to do is leave their pfa on the stack - need 

no further coding. The action of variable is to first create a header with 

the name that follows. Next the word , (comma) compiles a zero into the 

dictionary at the address given by here (i.e. the pfa of the new word). 

Finally DOF.S> modifies the code field address of the word created to tell it 

what to do with the pfa on the stack when it executes, in this case nothing. 

You should create some new variables using this definition and investigate 

them as before using CHECK. Note that although this should behave 

exactly like the variable indigenous to your system, the code field value it 

generates will be quite different. 

Let’s look at another example, this time a definition of CONSTANT: 

: CONSTANT ( n~) CREATE , DOES> ( ~n) @ ; 

Here the number on the stack when CONSTANT is executed is compiled 

into the parameter field address of the word created, and this value is then 

fetched onto the stack when the latter executes. 

The word , is one of a small selection used frequently in defining words. 
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It compiles the value on the stack into the next available cell in the 

dictionary, and adjusts the dictionary pointers so the cell is subsequently 

protected from inadvertent overwriting. It can be used several times in 

succession, so that the following words would allow the creation of double 

number variables and constants: 

: 2VARIABLE CREATE 0,0, 

DOES> ( —addr) ; 

: 2C0NSTANT ( d—) CREATE , , 

D0ES> ( —d) 2S) ; 

Words introduced in this section: 

CREATE 

Creates a header in the dictionary with the name that follows. When 

executed the new word will leave its parameter field address on the stack. 

<BUILDS 

FIG Forth only. Creates a header in the dictionary with the name that 

follows. Equivalent to create, but can only be used in conjunction with 

DOES>. 

DOES> 

Use only with CREATE or <BUILDS. Begins run time code for class of 

words. When executed modifies the code field address of the word just 

created to point to this code. 

12.3 Building data structures 

One of the most common uses of defining words is in building new data 

structures. By a data structure we mean any portion of memory reserved for 

special use, whose means of access is determined by its significance to the 

user. A variable is the simplest sort of data structure in the Forth system. 

Looking at the definition of 2VARIABLE in the previous section we can see 

that four bytes of memory were reserved, with the idea of using them to 

store double numbers. This class of words could, however, be thought of 

as containing pairs of single numbers. Their activity remains the same, it 

is only the interpretation of the results that differs. Taking this further we 

could reserve any number of cells in the dictionary to hold whole lists of 

values. Such a structure is traditionally called an array. 
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To create an array we will need to reserve a block of memory in the 
dictionary. Forth allows us to do this with the word allot. This expects a 
number on the stack representing the number of bytes we want reserved. 

You can try it at the keyboard like this: 

HERE U. <RETURN> 
10 ALLOT <RETURN> 
HERE U. <RETURN> 

here should increase by the number of bytes allotted, in this case 10. Our 
definition of array will expect on the stack the number of cells in the 
array to be created, and will need to allot twice this number of bytes: 

: ARRAY ( n~) CREATE 2* ALLOT 
DOES> ( n-addr) 

SWAP 2* + ; 

Notice that the coding after DOES> calculates the address of any element, 
assuming that the number of the element (starting at zero) is on the stack 
with the start address of the memory ALLOTted above it. The following 
will now create an array called fred with ten cell elements: 

10 ARRAY FRED < RETURN> 

The elements are numbered 0 through 9, so that the address of element 2 

would be returned by: 

2 FRED <RETURN> 

This address may then be used just as if it pointed to an ordinary variable. 
The problem with fred is that it will accept any element number, even 

though only 10 cells have been allotted. This means that: 

20 FRED <RETURN> 

gives an address outside the array, which might easily cause disastrous 
results. The way to avoid this is to include a check in the does> portion of 
array to ensure that the element number is within the allotted memory. 
We can do this by saving the original element count: 

: ARRAY ( n—) 

CREATE DUP , 2* ALLOT 

D0ES> ( n—addr) 2DUP 

a 0 SWAP WITHIN NOT 

IF Out of range." 

ABORT 

THEN 

SWAP 2* + 2+ ; 
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A definition of within can be found in Chapter 7 if it does not already 
exist on your system. To make the definition above more readable we can 
factor out the new coding: 

: RANGE-CHECK ( n,addr—) 

3 0 SWAP WITHIN NOT 

IF Out of range." 

ABORT 

THEN ; 

: ARRAY ( n—) 

CREATE DUP , 2* ALLOT 

D0ES> ( n—addr) 

2DUP RANGE-CHECK 

SWAP 2* + 2+ ; 

This gives a general format for creating arrays of many different types. To 
adapt the coding above for double number arrays, for instance, all we need 
to do is substitute 4* for 2* in both cases. In order to allow you to create 
byte variables and arrays most Forth systems provide the word c, which 
compiles one byte into the dictionary. This can be used for variables 
whose value will always be less then 256: 

: CVARIABLE CREATE 0 C, 
DOES> ( addr-) ; 

A more interesting use of c, is as a defining word which allows you to name 
ASCII control codes and have them automatically EMlTted: 

: CTRL ( n-) CREATE C, 
DOES> C@ EMIT ; 

This could then be used as in: 

7 CTRL BEL 

13 CTRL RET 

10 CTRL LF 

11 CTRL VT 

: CR RET LF ; 

We might also use c, to create a class of masks to enable us to investigate 
any bit from a given byte value: 
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: MASK CREATE C, D0ES> C5) AND ; 

2 BASE ! 

10000000 MASK BIT7 

01000000 MASK BIT6 

00100000 MASK BIT5 

00010000 MASK BIT4 

00001000 MASK BIT3 

00000100 MASK BIT2 

00000010 MASK BIT1 

00000001 MASK BIT0 

DECIMAL 

Here is an application designed to help you pick sports teams using two 
classes of words - players and teams. The defining word for players looks 
like this: 
: PLAYER CREATE LATEST , 

DOES> ( -addr) @ ; 

This creates a header for the name that follows and then compiles the new 
word’s name field address into its pfa. The name field address is left on the 
stack when this word executes, latest does not exist on some systems, on 
PolyForth, for instance, the equivalent coding would be: 

LAST @ @ 

or 

LAST @ @ B/H + 

Using player names can be added to the list of players as in: 

PLAYER DRIBBLE <RETURN> 

Executing dribble would leave its own name field address on the stack, 
which we can use to type out the name: 

DRIBBLE COUNT 31 AND TYPE <RETURN> 
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The 31 AND is needed because only the first five bits of the nfa are used for 
the count of the name. We now need to create teams in which to put our 
players. This means another defining word, which looks very similar to 
our original definition of array: 

: TEAM ( n~) CREATE DUP, 
2* ALLOT 
DOES> ( --addr) ; 

With this we can create a named team with space for any number of 
players: 

11 TEAM UNITED 

When executed united leaves its own pfa on the stack, representing the 
cell containing the count of elements in the array. Each cell will represent 
one player, so that the following will calculate a player’s address given the 
appropriate team’s pfa and the player number (in this case 1 to 11): 

: ’PLAYER ( addr,n~addr) 1- 2* + 2+ ; 

This can be used to store the nfa given by the player’s name into an 
element of the team array: 

: PICKED ( addr,addr,n~) ’PLAYER ! ; 

Used as: 

DRIBBLE UNITED 1 PICKED <RETURN> 

The address given by ’player also allows us to list out a given member of 

any team: 

: .PLAYER ( addr,n —) 

'PLAYER 3 

?DUP IF COUNT 31 AND TYPE 

THEN ; 

or all of the team: 

: .PLAYERS ( addr--) 

DUP 3 1+ 1 

DO CR I 

DUP I .PLAYER 

LOOP DROP ; 

We can thus check that dribble has been picked for united with: 

UNITED 1 .PLAYER <RETURN> 
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or simply: 

UNITED .PLAYERS <RETURN> 

Finally a simple word allows us to drop players from any team: 

DROPPED ( addr,n~) ’PLAYER 0 SWAP ! ; 

So that to drop dribble from united we would say: 

UNITED 1 DROPPED <RETURN> 

Words introduced in this section: 

c, ( b~) 
Compiles a byte value into the top of the dictionary and resets the 
dictionary pointer accordingly. 
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Forth glossaries 

The normal stack effect of each word is given in brackets after its name as 
(stack before-stack after) 

Numbers on the stack are represented as follows: 

n 16-bit value, 
d 32-bit value, 
u Prefix meaning ‘unsigned’, 
rem Remainder, 
quot Quotient, 
addr 16-bit address. 
f Flag. Zero means false, non-zero means true, 
b 16-bit value within 8-bit range, 
char Value representing ASCII character. 

Where a word expects to be followed by a name the notation (NAME) 
appears after it. 
Glossaries are based on information supplied by the Forth Interest Group, 
P.O. Box 1105, San Carlos, CA 94070, USA. 
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Stack Manipulation 

DUP ( n-n3n) 
Duplicate top item on the stack. 

drop (n-) 
Discard top item on the stack. 

swap (nl,n2-n2,nl) 
Reverse the positions of the top two items on the stack. 

OVER (nl,n2-nl,n2,nl) 

Duplicate second item on the stack and place it on the top. 

rot (nl,n2,n3-n2,n3,nl) 

Rotate third item on the stack to the top. 

PICK (nl-n2) 
Copy nlth item on the stack to the top (thus 1 pick = dup, 2 pick = over). 

ROLL (n-) 
Rotate nth item on the stack to the stop (thus 2 roll = SWAP, 3 roll = 

ROT) 

?dup (n—n,(n)) 

Duplicate top stack value only if non-zero. 

>R (n—) 
Move top parameter stack item to the top of the return stack. Must be 
restored with R> at same level to avoid unpredictable results. 

R> (—n) 
Move top return stack item to the top of the parameter stack. 

R@ (—n) 
Make a copy of the top value of the return stack onto the top of the 
parameter stack. 

DEPTH (-n) 
Leave a count of the number of 16-bit numbers on the stack (before depth 

is executed). 
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Comparison 

< (nl,n2-f) 
Leave true if nl is less than n2. 

= (nl,n2-f) 
Leave true if nl equals n2. 

> (nl,n2-f) 
Leave true if nl is greater than n2. 

0< (n-f) 
Leave true if the top item on the stack is less than zero (i.e. negative). 

0= (n-0 
Leave true if the top item on the stack is zero (equivalent to NOT). 

0> (n-f) 
Leave true if the top item is greater than zero (i.e. positive). 

d< (dl,d2-f) 
Leave true if dl is less than d2. 

U< (unl,un2-f) 
Leave true if uni is less than un2. Treats both numbers as unsigned 
integers. 

NOT ( fl-f2) 
Reverse truth value of the top stack item (equivalent to o=). 

Arithmetic And Logical 

+ (nl,n2-nl+n2) 
Add together top two stack items. 

D+ (dl,d2-dl+d2) 
Add together the two double precision numbers on the stack. 

(nl,n2-nl-n2) 
Subtract the value on the top of the stack from the value underneath it. 

1+ (n-n+1) 
Add one to the top stack item. 

1- (n-n—1) 
Subtract one from the stack item. 

2+ 

Add two to the top stack item. 
(n-n+2) 
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2- 

Subtract two from the top stack item. 

Multiply together the top two stack items. 

(n-n-2) 

(nl,n2-nl*n2) 

/ (nl,n2-quot) 
Divide the second item on the stack by the value on top. Quotient is 
rounded towards zero. 

mod (nl,n2-rem) 

Leave remainder from dividing nl by n2. Remainder has same sign as nl. 

/MOD (n 1 ,n2-rem ,quot) 
Divide nl by n2 and leave remainder and quotient. 

*/MOD (n 1 ,n2 ,n3-rem,quot) 
Multiply nl by n2 and divide the result by n3. Uses double precision 
intermediate. 

*/ (nl,n2,n3-quot) 
Multiply nl by n2 and divide the result by n3. Uses double precision 
intermediate. Leaves quotient only rounded towards zero. 

u* (unl,un2-ud) 
Multiply together top two stack items as unsigned integers leaving unsig¬ 
ned double precision result. 

U/MOD (ud,un-urem,uquot) 
Divide double number by single giving single remainder and quotient. All 
values are unsigned. 

MAX (nl,n2-max) 
Leave the greater of the top two stack items and discard the other. 

MIN (nl,n2-min) 
Leave the smaller of the top two stack items and discard the other. 

abs (n-n) 

Remove the sign from the top stack item and leave the absolute value. 

NEGATE (n--n) 
Reverse the sign at the top stack item (two’s complement). 

DNEGATE (d-~d) 
Reverse sign of the double precision number on top of the stack. 

and (nl,n2-and) 
Perform logical bitwise AND on the top two stack items. 
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OR (nl,n2-or) 
Perform logical bitwise OR on the top two stack items. 

xor (nl,n2-xor) 
Perform logical bitwise exclusive OR on the top two stack items. 

Memory 

@ (addr-n) 
Replace address by value held at address. Pronounced ‘fetch’. 

! (n,addr-) 
Store value h at address. 

CC« ( addr-b) 

Replace address by byte value held at address. Pronounced ’c-fetch’. 

C! (b,addr-) 

Store byte value n at address. 

? (addr-) 
Print out the value held at address. 

+ ! 

Add n to value held at address. 
(n,addr-) 

MOVE ( addrl ,addr2,n-) 
Copy n two byte cells starting at addrl to memory starting at addr2. Has 
not effect if n is zero or negative. 

cmove ( addr 1 ,addr2 ,n-) 
Copy n bytes starting at addrl to memory starting at addr2. Has no effect 
if n is zero or negative. 

FILL (addr,n,b-) 
Fill n bytes of memory beginning at address with byte value. 

Control Structures 

DO.. .LOOP do: (end+1,start-) 
Set up loop given index range 

I (-n) 

Place current loop index on the top of the stack. 

J (-n) 

Return index of next outer DO.. .loop in the same definition. 

DO. , . +LOQP do; ( end +1,start-) 
+ loop: (-) 
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Like DO.. .LOOP but adds stack value n to index (instead of always adding 
one). Loop terminates when index is greater than or equal to limit (n>0), 
or when index is less than limit (n<0). 

LEAVE (-) 

Terminate loop at next LOOP or +LOOP by setting index equal to limit. 

IF. . .(true code). . .then if: (f-) 
If the flag on the top of the stack is true then execute code between the IF 

and then. 

IF.. .(true code). . .ELSE if: (f-) 
. . .(false code). . .THEN 

If the flag on the top of the stack is true then execute code between the IF 

and else, otherwise execute the code between else and then. 

BEGIN.. .UNTIL until: ( f-) 
Loop back to BEGIN until the flag on the top of the stack at UNTIL is true. 

BEGIN. . .WHILE.. .REPEAT while: ( f-) 
Loop while flag is true at WHILE; repeat loops unconditionally to BEGIN. 

When flag is false continue from REPEAT. 

EXIT (-) 

Terminate execution of this colon definition. May not be used within a 
DO. . .LOOP. 

EXECUTE (addr-) 

Execute dictionary entry at compilation address on the stack. This is the 
address returned by FIND. 

Terminal input/output 

CR 

Do a carriage return and line feed. 

EMIT 

Type ASCII value from stack. 

SPACE 

Type one space. 

SPACES 

Type n spaces if n>0, 

TYPE 

Type string of n characters from starting address. 

(-) 

(char-) 

(n-) 

(addr,n-) 

COUNT (addr-addr+ 1 ,n) 

Change address of string (preceded by length byte) to form suitable for 
TYPE. 
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-TRAILING (addr,nl-addr,n2) 
Reduce character count of string at address to omit trailing blanks. 

KEY (-char) 

Read single keystroke from the keyboard and leave its ASCII value on the 
stack. 

expect ( addr,n-) 
Read n characters (or until carriage return) from the keyboard and store 
them as string starting at address. Append null(s) to end of string. 

QUERY (-) 

Read 80 characters (or until carriage return) from the keyboard and store 
them in the terminal input buffer. Append null(s) to end of string. 

word (char-addr) 
Read the next word from the input stream using char as delimeter, or until 
null. Leave address of length byte. 

Numeric Conversion 

BASE (-addr) 

System variable containing current numeric base. 

DECIMAL (-) 

Set decimal number base. 

(n-) 
Print number with one trailing blank and sign if negative. 

U. (un-) 
Print unsigned number with one trailing blank. 

CONVERT ( d 1 ,addr 1-d2 ,addr2) 
Convert string at addrl +1 to double number and add value into dl leaving 
result d2. Addr2 is address of first non-convertable character. 

<# (-) 

Begin formatting a number on the stack into a string. 

# (udl-ud2) 
Convert next digit of unsigned double number and add it to the beginning 
of the output string. 

#s (ud-0 0) 
Convert all significant digits of unsigned double number into output 

string. 

HOLD (char-) 
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Insert ASCII character into formatted output string. For instance 46 HOLD 

inserts a decimal point (full stop). 

SIGN ( n-) 
If signed single number n is less than zero insert minus sign at the 
beginning of a formatted output string. 

#> ( d-addr,n) 
End formatting of formatted output string. Drops double number 
remaining on the stack (usually zero) and leaves appropriate arguments for 
type. The output string is generally held in memory just below pad. 

Mass Storage Input/Output 

LIST (n-) 

List out screen n at the terminal and store the value of n in the variable 
SCR. 

LOAD ( n-) 

Interpret screen n as if it were keyboard input. When finished return 
control to keyboard. 

scr (addr-) 
System variable containing the screen number most recently LlSTed. 

block (n-addr) 

Leave buffer address of block n, reading block from mass storage if 
necessary. 

UPDATE (-) 

Mark block most recently accessed as modified. 

BUFFER (n-addr) 

Allocate the next memory buffer to block n, writing its contents back to 
disk if it has been UPDATEd. The contents of the block are not read into 
memory. 

SAVE-BUFFERS (-) 

Write all UPDATEd blocks in the buffers to mass storage. 

EMPTY-BUFFERS (-) 

Mark all buffers as empty without writing any information back to mass 
storage. 

Defining Words 

: (NAME) 
Begin compiling colon definition with name (NAME) 

(-) 
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; (-) 
End compiling colon definition. 

VARIABLE (NAME) (-) 
Create a two byte variable named (NAME) 
which returns its address when executed. 

constant (NAME) (n-) 
Create a two byte constant named (NAME) which returns value n when 
executed. 

VOCABULARY (NAME) (-) 
Create a vocabulary named (NAME) which will become the CONTEXT 

vocabulary when it is executed. 

create. . .does> does: (-addr) 
Used to create new defining words with an execution time routine written 
in high-level forth. 

Vocabularies 

context (-addr) 

System variable pointing to vocabulary where names are first searched for. 

CURRENT (-addr) 

System variable pointing to vocabulary where new definitions are put. 

FORTH (-) 

Main vocabulary accessible from all other vocabularies. Execution sets 
context vocabulary. 

DEFINITIONS (-) 

Sets current vocabulary to context. 

'(NAME) (—addr) 
Find parameter field address of (NAME) in dictionary. If used in defini¬ 
tions compile pfa into the dictionary as a literal. If (NAME) cannot be 
found an abort is executed. 

find (NAME) (-addr) 
Find the code field address of (NAME) in dictionary. If (NAME) cannot 
be found in forth or the current vocabulary leave a zero. 

FORGET (NAME) (-) 
Forget all definitions back to and including (NAME) in the dictionary. 
Executes an abort if (NAME) is not in forth or current vocabularies. 
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Compiler 

, (n-) 
Compile the 16-bit number n into the next available cell in the dictionary. 

ALLOT ( n—) 
Set aside n bytes in the dictionary starting at HERE and reset dictionary 
pointer accordingly. If used in a definition adds n bytes to the parameter 
field address. 

Print message terminated by ’. If used in definition print when executed. 

IMMEDIATE (-) 
Mark the most recently defined word as immediate, thus causing it to be 
executed when used in a definition rather than compiled. 

LITERAL ( n-) 
If compiling save n in the dictionary to be placed on the stack when the 
word is executed. 

state (-addr) 
System variable whose value is non-zero (i.e. true) when compilation is 
occurring and zero (false) when interpreting. 

[ (-) 
Stop compiling input text and begin executing. 

] _ _ ... (-) 
Stop executing input text and begin compiling. 

compile (NAME) (-) 
Compile the code field address of the (non-immediate) word which follows 
into the dictionary upon execution of the current definition. 

[compile] (NAME) (-) 
Causes the word that follows to be compiled into the current definition 
even if it is immediate. 

Miscellaneous 

( . . . (-} 
Begin a comment terminated by a ). Note that this word must be followed 
by a space. 

HERE (-addr) 
Leave the address of the next available dictionary location. 

pad (-addr) 
Leave address of a scratch pad area of memory of at least 64 bytes. PAD 
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usually floats a fixed number of bytes above the top of the dictionary. 

>IN (-addr) 

System variable containing character offset into input buffer. 

BLK (-addr) 

System variable containing the number of the block currently being 
interpreted. BLK contains zero when interpretation is from the terminal. 

ABORT (-) 

Clear parameter and return stacks and return control to the keyboard 
without issuing an ‘ok’. 

QUIT (-) 

Like abort except does not clear the parameter stack or issue any error 

message. 

79-STANDARD (-) 

Verify that system conforms to the FORTH-79 standard. 
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2! (d,addr-) 

Store d in four consecutive bytes starting at addr. 

2@ (addr-d) 

Fetch onto the stack the contents of the four consecutive bytes starting at 

addr. 

2CONSTANT (NAME) ( d-) 

Create a double precision constant named (NAME) with the value d in its 

parameter field. When executed (NAME) will leave the value d on the 

stack. 

2DROP ( d-) 

Drop the top double number on the stack (i.e. the top two stack items). 

2DUP (d-d,d) 

Duplicate the top double number on the stack. 

20VER (dl,d2-dl,d2,dl) 

Make a copy of the second double number on the stack onto the top of the 

stack. 

2ROT (dl,d2,d3-d2,d3,dl) 
Rotate the third double number to the top of the stack. 

2SWAP (dl,d2-d2,d 1) 

Exchange the top two double numbers on the stack. 

2VARIABLE (NAME) 

Create a variable called (NAME) in the dictionary and assign four bytes 

for storage in its parameter field. When executed (NAME) will leave the 

start address of its parameter field on the stack. 

D+ (dl,d2-dl+d2) 

Add together d 1 and d2 leaving their sum D- (d 1 ,d2-dl-d2) 

Subtract d2 from dl and leave the difference. 

d. (d-) 

Display the double number d according to the current base followed by 

one space. Display a leading sign if negative. 
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D.R (d,n-) 

Display the double number d according to the current base right aligned 

in a field width n. Display a leading sign if negative. 

do= (d-f) 
Leave a true flag if d is equal to zero else false. 

D< 

Leave a true flag if dl is less than d2 else false. 

(dl,d2-f) 

D= 

Leave a true flag if dl is equal to d2 else false. 

(dl,d2-f) 

DABS 

Leave the absolute value of the double number d. 

(d-d) 

DMAX 

Leave the larger of two double numbers. 

(dl,d2-d) 

DMIN 

Leave the smaller of two double numbers. 

(dl,d2-d) 

DNEGATE 

Reverse the sign of the double number on the stack. 

(d-d) 

du< (udl,ud2-f) 

Leave a true flag if udl is less than ud2 else false. Treat both numbers as 

unsigned. 
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Stack Manipulation 

dup (n-n,n) 
Duplicate top item on the stack. 

drop (n-) 

Discard top item on the stack. 

SWAP (nl,n2-n2,nl) 
Reverse the positions of the top two items on the stack. 

over (nl,n2-nl,n2,nl) 
Copy the second stack item onto the top. 

rot (nl,n2,n3-n2,n3,nl) 
Rotate third item on the stack to the top. 

PICK (nl-n2) 
Copy nth item (n2) on the stack top (thus 1 pick = dup, 2 pick = over). 

roll (n-) 

Rotate nth item on the stack to the top (thus 2 roll = swap, 3 roll = 
ROT. 

-dup (n—n, (n)) 
Duplicate top stack value only if non-zero. 

>R (n~) 

Move top parameter stack item to the top of the return stack. Must be 
restored with R> at same level to avoid unpredictable results. 

R> (—n) 

Move top return stack item to the top of the parameter stack. 

R (—n) 
Make a copy of the top value of the return stack onto the top of the 
parameter stack. 

so (-addr) 
A user variable which holds the initial value for the stack pointer. 
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SP! (-) 
A routine which initializes the stack pointer from so. User supplied. 

sp@ (-addr) 

Returns the address of the top of the stack to the top of the stack. 

Comparison 

Return true if nl is less than n2. 

(nl,n2-f) 

(nl,n2-0 

Return true if n l equals n2. 

> (nl,n2-f) 

Return true if nl is greater than n2. 

0< (n-f) 

Return true if the top item on the stack is less than zero (i.e. negative). 

o= (n-f) 

Return true if the top item on the stack is zero. Reverses the truth value. 

Arithmetic And Logical 

+ (nl,n2-nl+n2) 

Add together top two stack items. 

D+ (dl,d2-dl+d2) 

Add together the two double precision numbers on the stack. 

(nl,n2-nl-n2) 

Subtract the value on the top of the stack from the value underneath it. 

1+ (n-n+1) 

Add one to the top stack item. 

2+ (n-n + 2) 

Add two to the top stack item. 

* (nl,n2-nl*n2) 

Multiply together the top two stack items. 

/ (nl,n2-quot) 

Divide the second item on the stack by the value on top. Quotient is 

rounded towards zero. 

mod (nl,n2-rem) 

Leave remainder from dividing nl by n2. Remainder has same sign as nl. 
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/MOD (nl,n2-rem,quot) 

Divide nl by n2 and leave remainder and quotient. 

*/MOD (n 1 ,n2 ,n3-rem ,quot) 

Multiply nl by n2 to give a 32-bit intermediate and divide by n3 leaving 

16-bit remainder and quotient. 

*/ (nl,n2,n3-quot) 

Multiply n 1 by n2 to give a 32-bit intermediate and divide by n3 leaving a 

16-bit quotient rounded towards zero. 

u* (unl,un2-ud) 

Multiply together top two stack items as unsigned integers leaving an 

unsigned double precision product. 

u' ( ud, un-urem, uquot) 

Divinde double number by single giving single remainder and quotient. 

All values are unsigned. Equivalent to Forth-79 U MOD. 

MAX (nl,n2-max) 

Compare the top two numbers and return the larger value. 

MIN ( n 1 ,n2-min) 

Compare the two two numbers and return the smaller value. 

abs ( n-n) 

Convert signed single number to its absolute value. 

DABS ( d-d) 

Convert the signed double number to its absolute value. 

minus (n--n) 

Reverse the sign of the top stack item (two’s complement). Equivalent to 

Forth-79 negate. 

DNEGATE (d--n) 

Reverse sign of the double precision number on top of the stack. Equiva¬ 

lent to Forth-79 DNEGATE. 

and (nl,n2-and) 

Perform logical bitwise AND on the top two stack items. 

or (nl,n2-or) 

Perform logical bitwise OR on the top two stack items. 

xor (nl,n2-xor) 

Perform logical bitwise exclusive OR on the top two stack items. 
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Memory 

@ ( addr-n) 

Return the contents of the cell address on the stack. Pronounced ‘fetch’. 

f 

Store value n at address. Pronounced ‘store’. 

(n,addr-) 

CCcv 

Return the byte contents of the address on the stack, 

fetch’. 

C! 

Store byte value at address. 

} 

Display the 16-bit contents of the cell address. 

(addr-b) 

Pronounced ‘c- 

(b,addr-) 

(addr-) 

(n,addr-) 

Add n to the contents of the address and leave the result in that cell. 

MOVE (addrl,addr2,n-) 

Copy n two byte cells starting at addrl to memory starting at addr2. 

Executes only for non-zero count values. 

CMOVE ( addr 1,addr2 ,n-) 

Copy n bytes starting at addrl to memory starting at addr2. Executes only 

for non-zero count values. 

FILL ( addr,n,b-) 

Fill n bytes of memory beginning at address with byte value. 

Control Structures 

DO. ..LOOP do: (end+1,start-) 

Set up loop given index range. 

I (-n) 

Place current loop index on the top of the stack. 

DO. ..+LOOP do; (end+1,start-) 

+ loop: (n-) 

Like DO.. .loop but adds stack value n to index (instead of always adding 

one). Loop terminates when index is greater than or equal to limit (n>0), 

or when index is less than limit (n<0). 

LEAVE (-) 

Terminate loop at next LOOP or +ioop by setting index equal to limit. 

if. . .(true code). . .endif if: ( f —) 
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If the flag on the top of the stack is true execute code between the if and 

ENDIF. The Forth-79 word THEN may be used interchangably with THEN 

in fig-Forth. 

IF. . .(true code). . .ELSE if: (f-) 

. . .(false code). . .endif 

If the flag on the top of the stack is true then execute code between the if 

and else, otherwise execute the code between ELSE and ENDIF. 

BEGIN.. .UNTIL Until: ( f-) 

Loop back to begin until the flag on the top of the stack at until is true. 

BEGIN. . .WHILE.. .REPEAT while: ( f-) 

Loop while flag is true at while; repeat loops unconditionally to begin. 

When flag is false continue from REPEAT. 

execute ( addr-) 

Execute dictionary entry at compilation address on the stack. This is the 

address returned by FIND. 

Terminal Input/Output 

(n-) 
Print number with one trailing blank and sign if negative. 

•R (n,n-) 

Print the second stack value as a signed number, right aligned in a field 

width specified by the top value. 

D. ( d—) 

Print a double number as a signed integer with one trailing blank. 

D.R (d,n-) 

Print a double number right aligned in specified field width. 

CR 

Do a carriage return and line feed. 

EMIT 

Type ASCII value from stack. 

SPACE 

Type one space. 

SPACES 

Type n spaces if n>0. 

(-) 

(char-) 

(-) 

(n-) 

type (addr,n-) 

Type string of n characters from starting address. 
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count (addr-addr+l,n) 

Change address of string (preceded by length byte) to form suitable for 

TYPE. 

-TRAILING ( addr,nl-addr,n2) 

Reduce charager count of string at address to omit trailing blanks. 

DUMP (addr,n-) 

Print out contents of n bytes starting at address. 

key (-char) 

Read single keystroke from the keyboard and leave its ASCII value on the 

stack. 

?TERMINAL (_f) 

Returns true if the terminal break key has been pressed. 

expect (addr,n-) 

Read n character (or until carriage return) from the keyboard and store 

them as string starting at address. Append null(s) to end of string. 

word (char-addr) 

Read the next word from the input stream using char as delimeter, or until 

null. Unlike Forth-79 word does not return address of the length byte. 

Numeric Conversion 

BASE (-addr) 

System variable containing current numeric base. 

DECIMAL (-) 

Set decimal number base. 

HEX (-) 

Set hexadecimal number base. 

NUMBER (addr-) 

Convert the string at the given address to a double number. Aborts if 

conversion is not possible. 

<# (-) 

Begin formatting a number on the stack into a string. 

# (udl-ud2) 

Convert next digit of unsigned double number and add it to the beginning 

of the output string. 

#s (ud-0 0) 

Convert all significant digits of unsigned double number into output 

string. 
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hold ( char-) 

Insert ASCII character into formatted output string. For instance 46 hold 

inserts a decimal point (full stop). 

SIGN (n,ud-ud) 

Insert minus sign into formatted output string if the third stack value is 

less than zero. 

#> (ud-addr,n) 

End formatting of formatted output string. Drops double number 

remaining on the stack (usually zero) and leaves appropriate arguments for 

TYPE. The output string is generally held in memory just below pad. 

Mass Storage Input/Output 

list (n-) 

List out screen n at the terminal and store the value of n in the variable 

SCR. 

LOAD ( n-) 

Interpret screen n as if it were keyboard input. When finished return 

control to keyboard. 

scr (addr-) 

System variable containing the screen number most recently LlSTed. 

BLK (-) 

System variable containing the number of the block to be interpreted. Set 

to zero when interpreting from the keyboard. Affects the operation of 

word and all definitions using word. 

b/buf (-n) 

System constant returning the number of bytes in a disk block. 

block (n-addr) 

Leave buffer address of block n, reading block from mass storage if 

necessary. 

UPDATE (-) 

Mark block most recently accessed as modified. 

BUFFER (n-addr) 

Allocate the next memory buffer to block n, writing its contents back to 

disk if it has been UPDATEd. The contents of the block are not read into 

memory. 

FLUSH (-) 

Write all UPDATEd blocks in the buffers back to mass storage. 
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EMPTY-BUFFERS (-) 

Mark all buffers as empty without writing any information back to mass 

storage. 

Defining Words 

: (NAME) (-) 

Begin compiling colon definition with name (NAME). 

End compiling colon definition. 
(-) 

VARIABLE (NAME) (n-) 

Create a two byte variable named (NAME) which returns its address when 

executed and initialize the contents with the value on the stack at compile 

time. 

CONSTANT ( n-) 

Create a two byte constant named (NAME) using the compile time stack 

value. This value is returned when (NAME) executes. 

;CODE (-) 

Used to start definition of run time code written in assembly language 

which will be attached to a newly created defining word. 

<BUILDS. .does> does: (-addr) 

Used to create new defining words with an execution time routine written 

in high-level Forth following DOES>. 

Vocabularies 

VOCABULARY (NAME) (-) 

Create a vocabulary named (NAME) which will become the CONTEXT 

vocabulary when it is executed. 

context (-addr) 

System variable pointing to vocabulary where names are first searched for. 

current (-addr) 

System variable pointing to vocabulary where new definitions are added. 

DEFINITIONS (-) 

Sets CURRENT to point to the same vocabulary as CONTEXT. 

FORTH (-) 

Main vocabulary accessible from all other vocabularies. Execution sets 

context vocabulary. 

EDITOR (-) 
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Sets context to point to the editor vocabulary. 

ASSEMBLER (-) 

Sets CONTEXT to point to the assembler vocabulary. 

' (NAME) (—addr) 

Search the dictionary for (NAME) and return the parameter field address 

if found. If used in definitions compile pfa into the dictionary as a literal. 

If (NAME) cannot be found an ABORT is executed. 

FORGET (NAME) (-) 

Forget all definitions back to and including (NAME) in the dictionary. 

Executes an abort if (NAME) is not in forth or current vocabularies. 

VLIST (-) 

Print out a list of all names in the CONTEXT vocabulary and below. 

Compiler 

’ . . . . . (n-) 
Compile the 16-bit number n into the next available cell in the dictionary. 

C. _ _ (b-) 
Compile the 8-bit value into the next available byte in the dictionary. 

ALLOT ( n—) 

Set aside n bytes in the dictionary starting at here and reset dictionary 

pointer accordingly. If used in a definition adds n bytes to the parameter 

field address. 

IMMEDIATE ( n-) 

Mark the most recently defined word as immediate, thus causing it to be 

executed when used in a definition rather than compiled. 

LITERAL (n-) 

If compiling save n in the dictionary to be placed on the stack when the 

word is executed. 

state (-addr) 

System variable whose value is non-zero (i.e. true) when compilation is in 

progress and zero (false) when interpreting. 

compile (NAME) (-) 

Compile the code field address of the (non-immediate) word which follows 

into the dictionary upon execution of the current definition. 
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Miscellaneous 

( (-) 
Begin a comment terminated by a ). Note than this word must be followed 

by a space. 

HERE (-addr) 

Leave the address of the next available dictionary location. 

pad (-addr) 

Leave address of a scratch pad area of memory which is a fixed offset from 

here, usually 68 bytes. Forth-79 specifies the length of pad but not the 

location. 

in (-addr) 

System variable containing character offset into input buffer. Equivalent 

to Forth-79 >in. 

ABORT (-) 

Clear parameter and return stacks and return control to the keyboard 

without issuing an ‘ok’. 

QUIT (-) 

Like ABORT except does not clear the parameter stack or issue any error 

message. 
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The Forth-83 Standard uses a more extensive stack parameter notation 

than Forth-79. The abbreviations and their meaning is as follows: 

addr 16-bit address in the range 0. . .65535. 

b bit value. 

flag 16-bit boolean flag. 

8b 8-bit value. 

16b 16-bit value. 

32b 32-bit value. 

char 7-bit value in the range 0. . .127. 

d signed double precision number in 

-2,147,483,648. . .+2,147,483,647. 

the range 

+d positive double precision number in 

0. . .2,147,483,647. 

the range 

ud unsigned double precision number in the range 

0. . .4,294,967,295. 

wd signed or unsigned double precision number in the range 

-2,147,483,647. . .4,294,967,285. 

n signed single precision number in the range -32,768. . .32,767. 

+n positive single precision number in the range 0. . .32,767. 

u unsigned single precision number in the range 0. . .65,535. 

sys system compilation. 

Stack Manipulation 

dup (16b-16b,16b) 

Duplicate top item on the stack. 

drop (16b-) 

Discard top item on the stack. 

swap (16b 1,16b2-16b2,16bl) 

Reverse the positions of the top two items on the stack. 

over (16bl,16b2-16b 1,16b2,16b 1) 

Duplicate second item on the stack and place it on top. 

(16bl,16b2,16b3-16b2,16b3,16bl) ROT 
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Rotate third item on the stack to the top. 

pick ( +n-16b) 

Leave a copy of the nth stack location, not counting the location con¬ 

taining the +n operand; the operand is zero based so that dup is equiva¬ 

lent to 0 pick and over is equivalent to l pick. 

roll ( +n-) 

Roll the nth (not counting the position occupied by the +n) stack locations 

contents to the top of the stack, moving all intervening values down one 

location; the +n operand is zero based so that rot is equivalent to 2 roll 

and 0 ROLL is a null operation. 

?dup (16b—16b,16b) or (0-0,0) 

Duplicate top stack value only if non-zero. 

>R (16b--) 

Move top parameter stack item to the top of the return stack. Must be 

restored with R> at same level to avoid unpreditable results. 

R> (—16b) 

Move top return stack item to the top of the parameter stack. 

R@ (—16b) 

Make a copy of the top value of the return stack onto the top of the 

parameter stack. 

DEPTH (-+n) 

Leave a count of the number of 16-bit numbers on the stack (before depth 

is executed). 

Comparison 

< (nl,n2-flag) 

Leave a true flag ( -1) if nl is less than n2. 

Leave a true flag ( -1) if wl equals w2. 

(wl,w2-flag) 

> (nl,n2-flag) 

Leave a true flag ( -1) if nl is greater than n2. 

@< (n-flag) 

Leave a true flag (-1) if the top item on the stack is less than zero (i.e. 

negative). 

0= (w-flag) 

Leave a true flag (— 1) if the top item on the stack is zero. 

0> (n-flag) 
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Divide nl by n2 leaving the floored quotient n4 rounded towards negative 

infinity. Remainder n3 has same sign as n2 if non-zero: forces an error if 

n2 equals zero or n4 is out of range. 

*/mod (nl,n2,n3-n4,n5) 

Multiply nl by n2 to form an intermediate 32-bit value and then divide by 

n3: result n4 is the remainder with the same sign as n3 if non-zero: result 

n5 is the floored quotient rounded toward negative infinity: forces an error 

if n3 equals zero or n4 is out of range. 

*/ (nl,n2,n3-n4) 

Multiply nl by n2 to form an intermediate 32-bit value and then divide by 

n3: result n4 is the floored quotient rounded toward negative infinity: 

forces an error if n3 equals zero or n4 is out of range. 

UM* (ul,u2-ud) 

Leave the unsigned double-protection product of ul and u2. 

um/mod (ud,ul-u2,u3) 

Leave the remainder u2 and floored quotient u3 of ud divided by ul: force 

an error if ul equals zero or u3 is out of range. 

MAX (nl,n2-max) 

Leave the greater of the top two stack items and discard the other. 

MIN (nl,n2-min) 

Leave the smaller of the top two stack items and discard the other. 

ABS ( n-u ) 

Remove the sign from the top stack item and leave the absolute value. 

NEGATE (n--n) 

Reverse the sign of the top stack item (two’s complement). 

DNEGATE (d-~d) 

Reverse sign of the double precision number on top of the stack. 

ANI, (16bl, 16b2-16b3) 

Perform logical bitwise and on the top two stack items. 

or (16bl,16b2-16b3) 

Perform logical bitwise OR on the top two stack items. 

X0R (16bl,16b2-16b3) 

Perform logical bitwise exclusive OR on the top two stack items. 

Memory 

(a 

Replace address by value at address. Pronounced ‘fetch’. 

(addr-16b) 
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Store value 16b at address. 
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(16b,addr-) 

era (addr-8b) 

Replace address by byte value 8b held at address. Pronounced ‘c-fetch’. 

C! (8b,addr-) 

Store byte value 8b at address. 

+ ! (w,addr-) 

Add w to value held at address. 

cmove (addr 1 ,addr2 ,u-) 

Copy n bytes starting at addrl to memory starting at addr2. Has no effect 

if n is zero or negative. 

CMOVE > (addrl,addr2,u-) 

Move u bytes, starting with the byte at (addrl + u - 1) to (addr2 + u - 1) 

and proceeding toward low memory. 

FILL (addr,u,8b-) 

Fill u bytes of memory beginning at address with byte value 8b. 

Control Structures 

DO (wl,w2-)(-sys) 

(compiling) 

Immediate word to begin an indexed loop, with initial value w2 and limit 

value wl; all do loops are performed at least once; sys is balanced during 

compilation by loop or +loop; force and error if space is not available for 

at least three levels of testing. 

loop (-) (sys-) 

(compiling) 

Immediate word to increment the current loop index by 1; terminate the 

loop if the index is incremented over the (limit-1) to limit boundary 

(otherwise repeat the loop); the error check value sys is left by DO during 

compilation. 

+LOOP (n-) (sys-) 

(compiling) 

Immediate word to increment the current loop index by n; terminate the 

loop if the index is incremented over the (limit-1) to limit boundary 

(otherwise repeat the loop); the error check value sys is left by do during 

compilation. 

I 

Place current loop index on the top of the stack. 

(-w) 
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J 
Place index of next outer DO.. .LOOP in the same definition. 

(-w) 

LEAVE (-) (compiling) 

Immediate word to transfer execution of program to beyond LOOP or 

+LOOP. Used as do. . .ieave. . .loop or do. . leave. . ,+loop. 

IF. . .(true code). . .THEN 

if: (flag-) (-sys) (compiling) 

then: ( sys-) (compiling) 

If the flag on the top of the stack is true then execute code between the if 

and then. 

if. . .(true code). . .else. . .(false code). . .then 

if: (flag-) (-sys) (compiling) 

else: (sys-sys) (compiling) 

then: (sys-) (compiling) 

If the flag on the top of the stack is true then execute code between the if 

and else, otherwise execute the code between else and then. 

BEGIN.. .UNTIL 

begin: (-sys) (compiling) 

until: (flag-) (sys-) (compiling) 

Loop back to begin until the flag on the top of the stack at until is true. 

BEGIN. . .WHILE.. .REPEAT 

begin: (-sys) (compiling) 

while: (flag-) (sysl-sys2) (compiling) 

repeat: ( sys-) (compiling) 

Loop while flag is true at WHILE; REPEAT loops unconditionally to BEGIN. 

When flag is false continue from REPEAT. 

EXIT (-) 

Terminate execution of this colon definition. May not be used within a 

DO.. .LOOP. 

execute (addr-) 

Execute dictionary entry at compilation address on the stack. This is the 

address returned by FIND. 

Terminal Input/Output 

(-) CR 

Do a carriage return and line feed. 

emit (16b-) 

Display the ASCII character defined by the lowest 7 bits of 16b on the 



Appendix D - Forth-83 Standard 225 

current output device; if additional bits are available for display in an 

environmentally dependant manner, all must be displayed. 

SPACE (-) 

Type one space. 

spaces (+n-) 

TYPE (addr,4n-) 

Type +n spaces if n>0 
Type string of n characters from starting address. 

.( (compiling) 

Immediate word to output the string up to the delimiting) character. 

count (addrl-addr2,+n) 

Change address of string (preceded by length byte) to form suitable for 

TYPE. 

TRAILING (addr,+nl-addr,+n2) 

Reduce character count of string at address to omit trailing blanks. 

KEY (-16b) 

Receive the ASCII character defined by the lowest 7 bits of 16b on the 

current input device; all ASCII codes are permitted; characters are not 

displayed nor are control characters processed. 

expect (addr,+n ) 

Store characters beginning at addr until a return is encountered or +n 

characters have been stored; the return is not stored but is displayed 

(along with all received characters) as a blank. 

SPAN ( addr) 

User variable containing the number of characters received and stored by 

the last execution of expect. 

word ( char-addr) 

Parses the next word delimited by char (ignoring any leading instances) or 

the end of the input stream and stores it with its count byte at address; a 

blank is appended to the character string but is not included in the count; 

the count equals zero if the input stream is already exhausted; the pointer 

in >in is updated to indicate the character after the final delimiter. 

£TTB (-addr) 

User variable containing the byte length of the text input buffer. 

tie (-addr) 

Leave a pointer to the first byte of the terminal input buffer; length of the 

buffer must be at least 80 characters. 
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Numeric Conversion 

base (-addr) 

User variable containing current I/O radix, in the range of 2-72. 

DECIMAL (-) 

Set decimal number base. (-) 

Print number with one trailing blank and sign if negative. 

u. (u-) 

Print unsigned number with one trailing blank. 

convert ( +dl,addrl-+d2,addr2) 

Convert string at addrl + 1 to double number and add value into +dl 

leaving result +d2. Addr2 is address of first non-convertable character. 

<# 

Begin formatting a number on the stack into a string. 
(-) 

# ( +dl-+d2) 

Convert next digit of unsigned double number and add it to the beginning 

of the output string. 

#s (+d-0 0) 

Convert all significant digits of unsigned double number into output 

string. 

HOLD (char-) 

Insert ASCII character into formatted output string. For instance 46 hold 

inserts a decimal point (full stop). 

SIGN ( n-) 

If signed single number n is less than zero insert minus sign at the 

beginning of a formatted output string. 

#> (32b-addr, + n) 

End formatting of formatted output string. Drops double number 

remaining on the stack (usually zero) and leaves appropriate arguments for 

TYPE. The output string is generally held in memory just below pad. 

Mass Storage Input/Output 

LOAD ( U-) 

Interpret screen n as if it were keyboard input. When finished return 

control to keyboard. 

block (u-addr) 

Assign the buffer whose first data byte is at addr to block u and transfer 

the data if the block is not already in a buffer; prior contents of the buffer 
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are saved to disk if the update bit is set; if block u is already in a buffer, 

addr points to it and no data is transferred; buffer contents must be 

storable (only the data within the last buffer referenced by BLOCK or 

buffer is valid). 

UPDATE (-) 

Mark block most recently accessed as modified. 

buffer ( u-addr) 

Similar to BLOCK except that block u might not be transferred to the buffer 

if not already in memory; the contents of the buffer after execution are 

unspecified. 

SAVE-BUFFERS (-) 

Write all UPDATEd blocks in the buffers back to mass storage. 

FLUSH 

Unassign all block buffers after executing a sequence equivalent to the 

save-buffers operation. 

Denning Words 

: (NAME) (-sys) 

Begin compiling colon definition with name (NAME). 

End compiling colon definition. 

(-sys) (compiling) 

variable (NAME) (-) 

Create a two byte variable named (NAME) which returns its address when 

executed. 

CONSTANT (NAME) ( 16b-) 

Create a two byte constant named (NAME) which returns value 16b when 

executed. 

vocabulary (NAME) (-) 

Compile a definition of (NAME) to initiate a new vocabulary; later execu¬ 

tion of (NAME) makes it the first vocabulary in the search order; the 

sequence (NAME) definitions makes (NAME) the compilation vocabu¬ 

lary to which new definitions are linked; (NAME) is not immediate. 

CREATE (NAME) (compiling) 

Create a dictionary entry for (NAME) without constructing any parameter 

field. When executed (NAME) will leave its pfa on the stack. 

DOES> (-addr) (compiling) 

Used as: (NAME1). . .(CREATE). . ,does>. . . ; Immediate word to 

define the execution behaviour of any later word (NAME2) defined using 
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(NAME1); the (CREATE) may be CREATE or any user defined word that 

executes CREATE; later execution of (NAME2) places its parameter field on 

the stack before executing the sequence of words between DOES> and ; in 

(NAMEl)’s definition. 

Vocabularies 

FORTH (-) 

Make FORTH the first vocabulary in the search order. Not immediate. 

DEFINITIONS (-) 

Make the compilation vocabulary the same as the first vocabulary in the 

search order. 

’(NAME) (— addr) 

Leave the compilation address addr of (NAME), which must be found 

within the current search order. Not immediate. 

['] (NAME) (-addr) (compiling) 

Immediate word to compile the compilation address of (NAME) as a 

literal within a definition. The address is left on the stack upon execution 

of the definition. 

FIND (NAME) (addrl-addr2,n) 

For a string with a count byte at addrl search for a matching word name 

using the current search order; if found addr2 is the matching word’s 

compilation address; n is 1 if the word is immediate ( or -1 otherwise); if 

no match is found addr2 is the same as addrl and n equals zero. 

>body (addrl-addr2) 

Leave the pfa addr2 of the word whose cfa is addrl. 

FORGET (NAME) (-) 

Delete all definitions back to and including (NAME); force an error if 

(NAME) is not within the current search order or if the compilation 

vocabulary is removed. 

Compiler 

(16b-—) 

Compile the 16-bit number 16b into the next available cell in the dic¬ 

tionary. 

ALLOT ( W-) 

Set aside n bytes in the dictionary starting at HERE and reset dictionary 

pointer accordingly. If used in a definition adds n bytes to the parameter 

field address. 
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(compiling) 

Immediate word to output the following character string up to the 

delimiting quote character. Can only be used within programs. 

IMMEDIATE 

Mark the most recently defined word as immediate, thus causing it to be 

executed when used in a definition rather than compiled. 

LITERAL (16b-) (16b-) 

(compiling) 

Immediate word to compile a system dependant operation which will 

return 16b to the stack upon execution. 

state (-addr) 

System variable whose value is non-zero (i.e. true) when compilation is 

occurring and zero (false) when interpreting. Contents may not be modi¬ 

fied by a program. 

[ (compiling) 

Stop compiling input text and begin executing. 

] (compiling) 

Stop executing input text and begin compiling. 

compile (NAME) (-) 

Compile the code field address of the (non-immediate) word which follows 

into the dictionary upon execution of the current definition. 

[compile] (NAME) (-) 

Causes the word that follows to be compiled into the current definition 

even if it is immediate. 

Miscellaneous 

( (compiling) 

Begin a comment terminated by a). Note that this word must be followed 

by a space; the comment characters must be entirely contained within the 

remaining input stream. 

here (-addr) 

Leave the address of the next available dictionary location. 

PAD (-addr) 

Leave a pointer to the first byte of a floating scratch pad area; the area 

must contain at least 84 bytes. 

>IN 

System variable containing character offset into input buffer. 

(-addr) 
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BLK (-addr) 

System variable containing the number of the block currently being 

interpreted, blk contains zero when interpretation is from the terminal. 

ABORT (-) 

Clear parameter and return stacks and return control to the keyboard 

without issuing an ‘ok’. 

ABORT” (flag-) (compiling) 

Immediate word to output the character string following delimited by a 

quote character and initiate a system dependant abort if flag is true at 

execution; the abort routine must at least include all functions of abort. 

QUIT (-) 

Like abort except does not clear the parameter stack or issue any error 

message. 

83-STANDARD (-) 

Verify that system conforms to the FORTH-83 standard. 
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Forth-83 double 
number extensions 

2! (d,addr-) 
Store d in four consecutive bytes starting at addr. 

2@ (addr-d) 
Fetch onto the stack the contents of the four consecutive bytes starting at 
addr. 

2CONSTANT (NAME) ( 32b-) 
Create a dictionary definition for (NAME) which executes by leaving 32b 
on the stack. 

2DROP ( d-) 
Drop the top double number on the stack (i.e. the top two stack items). 

2DUP (d-d,d) 
Duplicate the top double number on the stack. 

20VER (d 1 ,d2-d 1 ,d2 ,d 1) 
Make a copy of the second double number on the stack onto the top of the 
stack. 

2ROT (dl,d2,d3-d2,d3,dl) 
Rotate the third double number to the top of the stack. 

2SWAP (dl,d2-d2,dl) 
Exchange the top two double numbers on the stack. 

2VARIABLE (NAME) 
Create a variable called (NAME) in the dictionary and assign four bytes 
for storage in its parameter field. When executed (NAME) will leave the 
start address of its parameter field on the stack. 

d+ (dl,d2-dl+d2) 
Add together dl and d2 leaving their sum. 

D~ (dl,d2-dl-d2) 
Subtract d2 from dl and leave the difference. 

D2/ (dl—d2) 
The operand dl is shifted right arithmetically, including the sign bit. 
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D. (d-) 

Display the double number d according to the current base followed by 
one space. Display a leading sign if negative. 

D.R (d,+n-) 
Display the double number d in the current radix right justified in a field 
of +n characters; force an error condition if the field width is insufficient. 

D0= (wd-flag) 

Leave a true flag ( -1) if wd is equal to zero else false. 

D< (wdl,wd2-flag) 
Leave a true flag ( -1) if wdl is less than wd2 else false. 

D= (wdl,wd2-flag) 
Leave a true flag ( — 1) if wdl is equal to wd2 else false. 

dabs (d-ud) 

Leave the absolute value of the double number d. 

dmax (dl,d2-d) 
Leave the larger of two double numbers. 

dmin (dl,d2-d) 
Leave the smaller of two double numbers. 

DNEGATE ( d-d) 
Reverse the sign of the double number on the stack. 

du< (udl,ud2-flag) 

Leave a true flag (—1) if udl is less than ud2 else false. Treat both 
numbers as unsigned. 
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Forth-83 system 
extension word set 
<MARK (-addr) 

Leave the pointer addr to the destination of a backward branch; the 
pointer is primarily for later use by <resolve. 

< resolve (addr-) 
Used after ?branch or branch at the source of a backward branch to 
compile a branch address using the destination pointer addr. 

>MARK (-addr) 

Used after ?branch or branch at the source of a forward branch at addr to 
compile space for a pointer to the destination; the pointer is primarily for 
later use by >resolve. 

> resolve (addr-) 
Used at the destination of a forward branch to compile a branch offset in 
the space left by >mark, using the source pointer addr. 

?BRANCH ( flag-) 
Used as compile pbranch. Compile a conditional branch operation; a 
branch address must immediately follow; it is usually compiled by 
<RESOLVE (backwards branch) or >MARK (forward branch); later execu¬ 
tion of definition ignores the branch if flag is true or executes it if the flag is 
false. 

BRANCH 

Used as compile branch. Compile an unconditional branch operation; a 
branch address must immediately follow; it is usually compiled by 
<resolve (backwards branch) or >mark (forward branch); later execu¬ 
tion of definition ignores the branch if flag is true or executes it if the flag is 
false. 

context (-addr) 

User variable specifying the dictionary search order. 

current (-addr) 

User variable specifying the vocabulary to receive new definitions. 
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arithmetic 37,124—132 
arithmetic and logical 105-132 
arrays 189 
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ASCII 107,162, 191 
ASSEMBLER 55, 56, 173 
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BASE 109, 113 
base address 56 
BASIC 24 
B/BUFF 156 
BEGIN ... AGAIN 143 
BEGIN ... UNTIL 144 
BEGIN ... WHILE ... 

REPEAT 144 
binary 47 
bits 15,45 
BLANK/BLANKS 57, 67 
BLOCK 38,156 
blocks of memory 71 
bootstrap program 21 
brackets 67 
BUFFER 159 
buffers 59 
bug 29 
building data structures 189-194 
<BUILDS 188 
byte 16,45 

C, 191 
C! 49 
C+! 49 
C@ 46 
carriage return (CR) 66, 73 
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cell bit pattern 48 
central processing unit (CPU) 15 

CHECK 185 
choosing a system 38 
circumference of circle 126 
classes of words 185-194 
CLEAR 72 
clear editing screen 71 
Cobol 23 
CODE(NAME) 172,173 
code definitions 171 
field 169, 185 
field address 171 

colon definitions 65,66, 172 
comments 67 
communicating with computers 

15-16 
comparison 94 
of numbers 82 

COMPILE 183 
[COMPILE] 183 
compiler 25,181-184 
compile time 26 
computer languages 23, 32 
computer programming 20-31 
conditional repetition 134 
CONSTANT 160 
constants 74, 185-187 
CONTEXT 174 
context vocabulary 173 
control structures 133 
CONVERT 123 
counter 134 
CPU (central processing unit) 15, 

20 
CR 66, 73 
CREATE 187 
CUBED 91 
CURRENT 174 
current vocabulary 173 

data 50 
structures 189 
tables 59 

width 15 
debugging 29, 66,93 
DECIMAL 109,113 
decimal system 105-107 
decision making 80-86 
defining new words 65-79 
defining words 74,187-189 
definite repetition 134 
DEFINITIONS 174 
DEPTH 92 
destructive testing 29 
dialects of Forth 38 
dictionary 62,169, 173 
directory 163 
discounts application 129 
disk block buffers 63 
disk drive 38, 71 
division 37,125 
DOES> 187 
DO ... LOOP 134-141 
double numbers 116,144 
DOWN 114 
DP 100,104 
DPL 117,118 
drawbacks of Forth 33 
DRIBBLE 192 
DROP 89,93, 137 
DUMP 57 
DUP 89 
2DUP 89 
?DUP 96 
-DUP 96 

editing program source on disk 69 
EDITOR 71, 73,173 
EMIT 53 
EMPTY-BUFFERS 159 
ERASE 57 
error messages 161 
execution, vectored 175-181 
EXIT 168 
EXPECT 56,67 
exploring Forth system 167-184 
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fields 163 
Fig-Forth 38 
filing 161 
FILL 57 
FIND 168 
firmware 21 
flags 85 
flowchart example 27 
flowchart of BLOCK 157 
FLUSH 159 
FORGET (NAME) 69 
Forth 
compiler 181-184 
Fig-Forth 38 
Forth-79 38 
Forth-83 38 
general background 32-39 
interpreter 167 
PolyForth 38 

Forth editor see editor 
fractions 118 

H 100, 104 
header 185 
HERE 62, 64 
HEX 113 
hexadecimal system 111 
high level languages 23 
HOLD 118 

I 141 
IF ... ELSE ... THEN 80, 133 
images 50 
IMMEDIATE 181 
>IN 167 
indefinite repetition 134, 143-147 
INDEX 73 
indexed addressing 59 
indirect addressing 55 
infix notation 37 
inner interpreter 172 
input 66 
devices 16 
message buffer 62 

instruction 
cycle 20 
set 20 

INTERPRET 167 
interpreter 25, 167-169 
interpretive pointer 172 

kernel 32, 62 
KEY 53 

L 72 
languages 23 
last in first out (LIFO) 36 
LEAVE 139 
levels of programming 22 
LIFO (last in first out) 36 
line editor see editor 
linker 26 
link field 169, 185 
address (LFA) 171 

Lisp 25 
LIST 71 
LITERAL 182 
loading Forth 43 
logical operators 85 
Logo 25 

machine code 20 
main elements of a computer 14 
making decisions 80-86 
manipulating the stack 87 
mass storage input/output 15 
memory 16,21,45-64, 156-160, 

189 
map 61 
string 56 

memory address see address 
menu selection application 177 
MOD 125 
/MOD 126 
*/MOD 128 
multiplication 37, 128 

name field 169 
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address(nfa) 169 
naming conventions 78 
NEGATE 75, 116, 118 
new assembler definitions 172 
new words 65-79 
non-numeric information 50 
NOT 82 
nucleus 32, 62 
NUMBER 122 
numbers 
bases 105-113 
comparison 82 
conversion 122-124 

object code 22, 25 
operating system 21 
OR 86, 108 
output devices 16 
output formatting, numbers 

118-122 
OVER 89 

PAD 48 
paging 156 
parameter field 172, 185 
parameter stack see stack 
percentages 128 
peripherals 14 
pi 126 
PICK 92 
pointers 55, 62, 172 
Poly Forth 38 
precedence bit 181 
PREV 158 
printing 93 
programming 20-31 
programs 
assembly 22 
counter 20 
execution & control 133-155 
names 78 

pseudo code 29 
punctuation 117 

QUERY 167 
QUIT 167 

>R 143 
R> 143 
RAM (random access memory) 

18,21 
records 163 
registers 16 
relative addressing 55 
repetition 133-155 
return stack 141-143 
reverse Polish notation 37 
ROLL 92 
ROM (read only memory) 18,21 
ROT 89 
run time 26, 171 

.S 88 
S0 64 
SAVE-BUFFERS 159 
saving information 161 
SCR 72 
screen editor see editor 
screens 71, 156 
signed numbers 113 
simple filing 161 
single numbers 113 
source code 22, 25, 69 
SP@ 64 
space 53, 67 
sports team application 192-194 
SQUARES 90 
stack 36, 63, 87, 141-143 
manipulation 87 

storing information 161 
string data 56 
structure of dictionary 169 
subtraction 37, 52 
SWAP 89 
system variables 62 

tax reckoner application 147-155 
testing 29, 124 
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text processing 50 
-TEXT 140 
THRU 137 
TIB 63 
toy sales application 129 
two’s complement 115 
TYPE 57,67, 118 
types 
of computer 12-14 
of numbers 113-118 

U. 48 
U* 128 
U< 82 
U.D 144 
U/MOD 128 
unconditional repetition 134 
unsigned numbers 113 
UP 114 
UPDATE 158 
user dictionary 62 

using disks 87, 156-166 

variables 74, 185-187 
application 96 

VAT calculation application 147 
vectored execution 175-181 
virtual memory 156-160 
VLIST 65 
vocabularies 173-175 
VOCABULARY 174 

WIDTH 79 
WIPE 72 
WITHIN 94, 191 
WORD 123 
words 32, 34, 62, 65-79, 

173-175,185-194 
writing to disk 160-161 

XOR 86, 108 
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