Parameter Estimation of the Mixed Generalized Gamma Distribution Using Maximum Likelihood Estimation and Minimum Distance Estimation

THESIS

Dean G. Boerrigter, Capt. USAF

AFTI/GOR/ENS/98M-3

Approved for public release, distribution unlimited
The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U. S. Government.
PARAMETER ESTIMATION OF THE MIXED GENERALIZED GAMMA DISTRIBUTION USING MAXIMUM LIKELIHOOD ESTIMATION AND MINIMUM DISTANCE ESTIMATION

THESIS

Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Operations Research

Dean G. Boerrigter

Captain, USAF

March 1998

Approved for public release, distribution unlimited
PARAMETER ESTIMATION OF THE MIXED GENERALIZED GAMMA DISTRIBUTION USING MAXIMUM LIKELIHOOD ESTIMATION AND MINIMUM DISTANCE ESTIMATION

Dean G. Boerrigter
Captain, USAF

Approved:

Advisor: Maj. Edward A. Pohl, Ph.D.
11 MAR 98

Co-Advisor: Maj. W. Paul Murdock, Jr., Ph.D.
11 MAR 98

Reader: Dr. Albert C. Moore, Ph.D.
11 MAR 98
Acknowledgments

I would first like to thank Jesus Christ for the opportunity to try to glorify Him with this contribution to the field. For the Greater Glory of God. Acts 4:8-12.

I would like to thank the members of my committee Major Pohl, Major Murdock, and Dr. Moore for all the time and expertise that they gave supporting me in this thesis effort. I'd also like to thank Maj Reid who answered a numerical question or two that I had.

I would like to thank Audra Cake for her help with FORTRAN and reteaching me some of the basic properties of logarithms, Jim Cordeiro for his help checking my calculus, and especially Alan & Suzy Hulsopple, Carri Gray and many others for their prayers for my effort. I would like to thank Jim Cordeiro and Mark Friend for letting me use their dedicated computer (I always let them borrow it when they asked), and Jim Look for performing many replications for me on his computer. I would also like to thank Mike Warner for the replications he ran for me and for the input he gave on my write up and defense presentation. Lastly, I would like to thank Steve Oimen for his help putting together my thesis defense.

I will finish with mentioning that although I used Genetic Algorithms that are based in Darwinian evolutionary theory, I in no way endorse the theory. The preponderance of scientific evidence is against it. Genetic Algorithms work because they are an artificial representation of the theory. Johnston's Darwin on Trial shows that Darwinian evolutionary theories are based only on presupposition and blind faith in science.

Dean Boerrigter
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Terms</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract</td>
<td>ix</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>II. Literature Review</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Generalized Gamma Distribution</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Genetic Algorithms</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Maximum Likelihood Estimation</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Minimum Distance Estimation</td>
<td>19</td>
</tr>
<tr>
<td>2.5 Random Variate Generation</td>
<td>22</td>
</tr>
<tr>
<td>III. Methodology</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Monte Carlo Simulation</td>
<td>23</td>
</tr>
<tr>
<td>3.2 Random Variate Generation</td>
<td>25</td>
</tr>
<tr>
<td>3.3 Maximum Likelihood Estimation using a Genetic Algorithm</td>
<td>25</td>
</tr>
<tr>
<td>3.4 Minimum Distance</td>
<td>29</td>
</tr>
<tr>
<td>3.5 Evaluation Criteria</td>
<td>30</td>
</tr>
<tr>
<td>IV. Results</td>
<td>32</td>
</tr>
<tr>
<td>4.1 Single Component Distribution with Known Location Results</td>
<td>33</td>
</tr>
<tr>
<td>4.2 Single Component Distribution with Unknown Location Results</td>
<td>35</td>
</tr>
<tr>
<td>4.3 Mixture of Exponential Distributions with Known Location Results</td>
<td>38</td>
</tr>
<tr>
<td>4.4 Mixture of Weibull Distributions with Known Locations Results</td>
<td>42</td>
</tr>
<tr>
<td>4.5 Mixture of Exponentials with Unknown Locations Results</td>
<td>45</td>
</tr>
<tr>
<td>4.6 Mixture of Weibull Distributions with Unknown Locations Results</td>
<td>48</td>
</tr>
<tr>
<td>4.7 Mixture of Generalized Gamma Distribution Results</td>
<td>54</td>
</tr>
</tbody>
</table>
V. Conclusions .. 60
 5.1 MLE Conclusions .. 60
 5.2 MDE Conclusions .. 60
 5.3 Recommendations .. 61

Appendix A PDFs for Special Case Distributions ... 63

Appendix B Source Code ... 64
 Notes to the Code ... 64
 Public & Settings Module ... 65
 Driver Module ... 67
 Gen Gamma Module ... 70
 MicroGA Module ... 76
 Interface Module .. 81
 Generation Module .. 86
 Operations Module .. 88
 Rand Module .. 91
 Initial Module .. 92
 Report Module ... 95
 Stat Module ... 97
 MinDistM Module ... 98
 MinDistC1 Module .. 100
 MinDistC2 Module .. 102
 AD Module .. 104
 Sort Module .. 105
 RVG Module .. 106
 IntegratedDist Module ... 108

Appendix C Summarization Code .. 110
 Summary Mod ... 111
 Check Mod ... 114
 Print Mod .. 115
 Open Files Mod .. 117

Bibliography ... 119

Vita ... 123
List of Tables

Table 1 First Derivatives of the Generalized Gamma Distribution .. 4
Table 2 Special Cases (a, b, p>0) of the GGD4 .. 5
Table 3 First Derivatives of the GGD9 .. 10
Table 4 Example of Roulette Wheel Selection .. 13
Table 5 Example of Deterministic Tournament Selection .. 15
Table 6 Parameter Codes ... 15
Table 7 Parameter Bounds ... 27
Table 8 Dangers of Scaling .. 28
Table 9 Parameter Bounds for Minimum Distance ... 29
Table 10 Single Component Distributions, with Known Location Parameters, 1000 Replications 34
Table 11 Single Component Distributions with Unknown Location Parameter, 1000 Replications .. 36
Table 12 Mixture of Exponential Distributions, Known Location Parameters, 1000 Replications .. 39
Table 13 Mixture of Exponential Distributions, 750 Variates, 1000 Replications 40
Table 14 Mixture of Weibull Distributions, Known Locations, 1000 Replications 43
Table 15 Mixture of Exponentials with Unknown Location Parameters, 1000 Replications .. 46
Table 16 Mixture of Non-Separated Weibull Distributions, 1000 Replications 49
Table 17 Mixture of Widely Separated Weibull Distributions with Power <1, 1000 Replications .. 50
Table 18 Mixture of Widely Separated Weibull Distributions with Power >1, 1000 Replications .. 51
Table 19 Mixture of GGD9, Mix of Half-Normal Distributions Results, 1000 Replications 55
Table 20 Mixture of GGD9, Mix of Weibull Distributions Results, 1000 Replications 56
Table 21 Mixture of GGD9, Mix of Gamma Distributions, Results, 1000 Replications 57
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Typical Shapes for $f(x; c, a, b, p)$</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>PDF for a Mixture of Two Generalized Gamma Distributions</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Sample EDF vs. Estimated CDF</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Overview of Methodology</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Percent MDE Better for Single Distributions</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>Percent MDE Better for Mixture of Exponentials with Known Locations</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Percent MDE Better for Mix of Exponentials, 750 Variates</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>Percent MDE Better for Weibulls with Known Locations</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>Percent MDE Better for Mixture of Exponentials, Unknown Locations</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>Percent MDE Better for Mixture of Non-Separated Weibulls, Unknown Locations</td>
<td>52</td>
</tr>
<tr>
<td>11</td>
<td>Percent MDE Better for Widely Separated Weibulls, Power < 1, Unknown Locations</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>Percent MDE Better for Widely Separated Weibulls, Power > 1, Unknown Locations</td>
<td>53</td>
</tr>
<tr>
<td>13</td>
<td>Percent MDE Better, GGD9, Mixture of Half-Normal Distributions</td>
<td>58</td>
</tr>
<tr>
<td>14</td>
<td>Percent MDE Better, GGD9, Mixture of Weibull Distributions</td>
<td>58</td>
</tr>
<tr>
<td>15</td>
<td>Percent MDE Better, GGD9, Mixture of Gamma Distributions</td>
<td>59</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ave</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Distribution Function</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>Integrated Squared Distance</td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
<td></td>
</tr>
<tr>
<td>GGD</td>
<td>Generalized Gamma Distribution</td>
<td></td>
</tr>
<tr>
<td>GGD4</td>
<td>Four-Parameter Generalized Gamma Distribution</td>
<td></td>
</tr>
<tr>
<td>GGD9</td>
<td>Nine-Parameter Mixed Generalized Gamma Distribution</td>
<td></td>
</tr>
<tr>
<td>MDE</td>
<td>Minimum Distance Estimation</td>
<td></td>
</tr>
<tr>
<td>mGA</td>
<td>Micro-Genetic Algorithm</td>
<td></td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimation</td>
<td></td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Squared Error</td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>Probability Distribution Function</td>
<td></td>
</tr>
<tr>
<td>StDev</td>
<td>Standard Deviation</td>
<td></td>
</tr>
</tbody>
</table>
Abstract

The Generalized Gamma is an extremely flexible distribution that is useful for reliability modeling. Among its many special cases are the Weibull and Exponential distributions. A mixture of Generalized Gamma Distributions is even more useful because multiple causes of failure can be simultaneously modeled.

This research studied parameter estimation of the special cases of the Mixed Generalized Gamma Distribution and built upon them until the full nine-parameter distribution was being estimated. First, special cases of a single Generalized Gamma Distribution were estimated. Next, mixtures of Exponential distributions with both known and unknown location parameters were estimated. Next, mixtures of Weibull distributions with both known and unknown location parameters were estimated. Lastly, the full nine-parameter Mixed Generalized Gamma Distribution was estimated.

Two techniques were used to estimate the parameters of each distribution. The first technique used was the Method of Maximum Likelihood. The log likelihood equation was maximized using a Genetic Algorithm. The second technique used was the Method of Minimum Distance. This technique takes the Maximum Likelihood parameter estimate as initial estimate. With this initial estimate, the mixture and the first location parameter are sequentially varied to minimize the Anderson-Darling statistic between the estimated cumulative distribution function and the empirical distribution function. These two parameters are then fixed at their Minimum Distance values and the remaining parameters are re-estimated using Maximum Likelihood.

Minimum Distance Estimation was demonstrated to improve the parameter estimates from Maximum Likelihood for almost all of the special case distributions tested. It did not improve the estimate for the full nine-parameter Mixed Generalized Gamma Distribution, but this was because the technique used to find the Maximum Likelihood parameter estimates performed poorly and did not return a good initial estimate for Minimum Distance.
PARAMETER ESTIMATION OF THE MIXED GENERALIZED GAMMA DISTRIBUTION USING MAXIMUM LIKELIHOOD ESTIMATION AND MINIMUM DISTANCE ESTIMATION

I. Introduction

1.1 Background

Weapon systems and support systems are becoming more complex and are also becoming more expensive. In an era of shrinking defense budgets, the reliability of these systems become paramount. Reliability analysis is used to obtain the probability of a component’s ability to perform a given mission (26:1). Probability distributions are used to model failure times. The better the probability distribution fits the sample data, the more likely it is to predict failure of the component or system being modeled. Accurate failure models can save money by “right-sizing” maintenance structure. This could cause one of two possible problems. Inaccurate models can mean either unneeded and expensive maintenance capability could be bought. On the other hand, not enough maintenance could be acquired, which would degrade operational readiness. Typical probability distributions used in modeling failure data include the Exponential and the Weibull distributions. Embedding these competing distributions into a single parametric framework would allow a comprehensive test to determine which model provided the better functional form to model failure times (12:69). Multiple distributions could be tested at once and then the results could then be checked to see if they match any of the special cases. One candidate distribution is the Generalized Gamma Distribution. Special cases of it include the Half-Normal, Exponential, Gamma, Weibull and the Chi Squared Distributions (51:351). It can show four models of hazard functions—bathtub, inverted bathtub, increasing and decreasing. It is the only distribution capable of showing all four types with the selection of the proper parameters (47:280). The Mixed Generalized Gamma Distribution can be used to model components that have two causes of failure, such as sudden catastrophic failures and wear-out failures (43:1799). It is a highly flexible distribution, but there has been some reluctance to use it because of the difficulty involved in estimating its parameters.
1.2 Problem Statement

The formal statement of the problem is compare the parameter estimation techniques of Maximum Likelihood Estimation and Minimum Distance Estimation for the Mixed Generalized Gamma Distribution to determine if Minimum Distance gives better parameter estimates than Maximum Likelihood Estimation alone. The closer the estimated parameters are to the true parameters, the better the distribution fit will be and the more accurate information the distribution will give. Two methods will be tested to estimate the parameters from random variates generated from a Mixed Generalized Gamma distribution. One is the Method of Maximum Likelihood, which estimates parameters by maximizing the log likelihood equation. A second method is called the Method of Minimum Distance, which starts with the MLE parameters and then iteratively adjusts the parameter estimates of the cumulative distribution function against the empirical distribution function (EDF) in order to improve them. This method has been shown to improve parameter estimation for distributions such as the three-parameter Generalized Gamma by William James in 1980 (26), the four-parameter Generalized Gamma distribution by Shumaker in 1982 (49), the mixture of Exponential distributions by Benton-Santo (1) and the Mixed Weibull Distribution by Donald Mumford in 1996 (37). It is therefore believed that the Method of Minimum Distance will improve parameter estimates for the Mixed Generalized Gamma Distribution.
II. Literature Review

Five topics will be discussed in the chapter: the Generalized Gamma Distribution and its parameter estimation, Genetic Algorithms, Maximum Likelihood Estimation, Minimum Distance Estimation, and Random Variate Generation. Samples of random variates were generated from Generalized Gamma Distribution. Two parameter estimation techniques were employed to calculate sample parameter estimations: Maximum Likelihood Estimation and Minimum Distance Estimation. A Genetic Algorithm was used to maximize the result of the maximum likelihood equation used in both estimation techniques.

2.1 Generalized Gamma Distribution

The probability distribution function of the Generalized Gamma Distribution (GGD) is given by:

\[f(x; c, a, b, p) = \frac{b^p \cdot (x-c)^{bp-1} \cdot e^{-(x-c)/a^p}}{a^p \cdot \Gamma(b)} \]

where \(a, b, p \geq 0 \) and \(x \geq c \geq 0 \) (20:2).

The function has four parameters: \(c \) is the location parameter, \(a \) is the scale parameter, \(b \) is the shape/power parameter, and \(p \) is the power parameter. \(\Gamma(z) \) is the Gamma function, defined by

\[\Gamma(z) = \int_0^\infty t^{z-1}e^{-t} \, dt \] (31:332).

The cumulative distribution function of the Generalized Gamma Distribution is given by (20:2):

\[F(x; c, a, b, p) = \frac{\Gamma((x-c)/a^p)(b)}{\Gamma(b)} \]

The numerator is the Incomplete Gamma Function, which means that it is the Gamma function integrated to a finite number, instead of to infinity (32:512-513). The Incomplete Gamma Function \(\Gamma_x(z) \) is defined by

\[\Gamma_x(z) = \int_0^x t^{z-1}e^{-t} \, dt \] .

The finite number in this case is \([(x-c)/a]^p \). The numerator is normalized by the denominator, thus letting the function range from 0 to 1, which is a necessary condition for the definition of a cumulative distribution.
function. Since the cumulative distribution function is an incomplete Gamma function ratio, this suggests the name Generalized Gamma (20:2).

The partial derivatives of the four parameter Generalized Gamma Distribution with respect to each of the parameters may be defined with the aid of the following two auxiliary functions:

\[S = \left(\frac{x-c}{a} \right)^p \]
\[T = (x-c)^{b-p} \cdot \frac{\exp(-S)}{a^b \cdot \Gamma(b)} \]

The partial derivatives with respect to the parameters c, a, b and p are:

\[\frac{\partial f}{\partial c} = \frac{T}{x-c} \cdot \left\{ -p \cdot (b-p-1) + p^2 \cdot S \right\} \]
\[\frac{\partial f}{\partial a} = \frac{p^2}{a} \cdot T \cdot \{S - b\} \]
\[\frac{\partial f}{\partial b} = T \cdot \{p^2 \cdot \ln(x-c) - p^2 \cdot \ln(a) - p \cdot \Psi(b)\} \]
\[\frac{\partial f}{\partial p} = T(x,c,a,b,p) \cdot \{1 + p \cdot b \cdot \ln(x-c) - p \cdot S \cdot \ln(\frac{x-c}{a}) - p \cdot b \cdot \ln(a)\} \]

Table 1 First Derivatives of the Generalized Gamma Distribution

where \(\Psi(x) \) is the Psi or Digamma function, which is defined as \(\Psi(x) = \frac{d}{dx} \ln(\Gamma(x)) \) \(x > 0 \)

(32:513,3,53).

2.1.1 A Brief History of Generalized Gamma Distribution Development

The three-parameter Generalized Gamma Distribution (GGD) was originally proposed by E.W. Stacy in 1962 (51,10:423). His three-parameter GGD is equivalent to the four-parameter GGD with the location parameter, c, set equal to zero. The generalization was accomplished by supplying a positive parameter as an exponent in the exponential factor of the gamma distribution (51:1187). In 1965, Parr and Webster demonstrated the usefulness of the distribution as a model for failure density function in reliability
predictions (39:1). Harter made the GGD more general by adding a location parameter. Harter wanted to enhance the usefulness of the Generalized Gamma Distribution for reliability modeling (21:159). In 1966, Harter developed an iterative procedure for the Maximum Likelihood Estimates of Generalized Gamma Distribution parameters and the asymptotic variances and covariance of the maximum likelihood estimators for complete and censored samples (20:7-9). Stacy and Mihran demonstrated a further generalization by including cases where the power parameter, p, could be negative (52:349). In 1970s, Hager and Bain developed inferential procedures for the three parameter GGD, and compared its reliability estimates with the Weibull (18:1601, 19:547). In 1980, Hobbs, Moore and James used Minimum Distance to estimate the parameters for the three-parameter Generalized Gamma Distribution (26:vi, 22:237). In 1982, Shumaker used Minimum Distance to estimate the parameters for the four-parameter Generalized Gamma Distribution (49:22). In 1987, Wingo developed a method to find the maximum likelihood parameter estimates for the three-parameter GGD using numerical root isolation because of the numerical difficulties that can occur fitting the GGD parameters (64:586). In 1991, Rao, Kantam and Narasinkham developed estimators for the location and scale parameters for the GGD (44:3823). In 1995, Pham and Almhaana presented the hazard rate for the three parameter GGD (42:392).

In reliability and life testing, several distributions are often used to model failure times. It has been suggested by Farewell and Prentice that embedding these competing distributions into a single parametric framework would allow running a comprehensive test to compare them (12:69). The Generalized Gamma contains a number of important distributions as special cases. Some examples of special cases as shown by Stacy and Mihran are listed in Table 2 (52:351). Typical shapes for the PDF are given in Figure 1.

Table 2 Special Cases (a, b, p>0) of the GGD4

<table>
<thead>
<tr>
<th>GGD4(c,a,b,p)</th>
<th>Equivalent Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,B,1,1)</td>
<td>Exponential (B)</td>
</tr>
<tr>
<td>(0,B,α,1)</td>
<td>Gamma(α,B)</td>
</tr>
<tr>
<td>(0,B,1,α)</td>
<td>Weibull(α,B)</td>
</tr>
<tr>
<td>(0,√2n/2,1)</td>
<td>Chi Squared(n)</td>
</tr>
<tr>
<td>(0,√2,1/2,2)</td>
<td>Half Normal</td>
</tr>
<tr>
<td>(0,c√2,1,2)</td>
<td>Rayleigh c>0</td>
</tr>
</tbody>
</table>
Figure 1 Typical Shapes for $f(x; c, a, b, p)$
2.1.2 A Selected History

Parr and Webster studied the Generalized Gamma distribution to discriminate between failure
density functions, particularly the Weibull and the Exponential, which are both special cases of the
Generalized Gamma (39). The Maximum Likelihood Equations that they derived for the three-parameter
Generalized Gamma distribution with known location are for the following estimated parameters:

\[a = \left[\left(\frac{p}{n \cdot d} \right) \cdot \sum_{i=1}^{n} x_i^p \right]^p \]

\[\ln(p) - \ln(n) - \ln(d) + \ln\left(\sum_{i=1}^{n} x_i^p \right) - \left(\frac{p}{n} \right) \cdot \sum_{i=1}^{n} \ln(x_i) = 0 \]

\[\ln(p) - \ln(n) - \ln(d) + \ln\left(\sum_{i=1}^{n} x_i^p \right) + \left(\frac{p}{d} \right) - \frac{p}{\sum_{i=1}^{n} x_i^p} \cdot \sum_{i=1}^{n} (x_i^p \cdot \ln(x_i)) = 0 \]

where \(d = b \cdot p \) and \(b, p > 0 \) and \(n \) is the sample size.

Radhakrishna, Rao and Anjaneyulu derived the moment and maximum likelihood estimators for
mixture of a pair of three-parameter Generalized Gamma Distributions in order to study catastrophic and
wear-out failure life-testing data (43). Their three-parameter Generalized Gamma Distribution is the same
as the four parameter distribution with the location parameter set to zero:

\[f(x; a, b, p) = \frac{p \cdot x^{a-1} \cdot e^{-x/a}}{a \cdot b \cdot \Gamma(b)} \]

and their mixture is defined as

\[g(x; a_1, b_1, p_1, a_2, b_2, p_2, m) = m \cdot f(x; a_1, b_1, p_1) + (1-m) \cdot f(x; a_2, b_2, p_2). \]

Thus their log likelihood function is

\[LL = \sum_{i=1}^{n} \ln\{g(x; a_1, b_1, p_1, a_2, b_2, p_2, m)\}. \]

The maximum likelihood equations to be solved are defined as:
\[
\frac{d\text{LL}}{d\theta_j} = \sum_{i=1}^{n} \frac{1}{g(x_i)} \cdot \frac{dg}{d\theta_j}
\]

where \(\theta_j \) is each of the seven parameters. Thus, to obtain the Maximum Likelihood Estimates, these equations are to be solved simultaneously using a numerical technique such as Newton-Raphson or the method of steepest descent.

2.1.3 Mixed Generalized Gamma Distribution

In reliability studies, there can be more than one cause for failure in a population of components. Attempting to fit a unimodal distribution to account for two separate causes may not fit either type well, particularly if the failure times associated with both are widely separated. One method of working with multiple causes of failure is to use a mixture distribution. A mixture distribution is a distribution made of one or more component distributions. Its probability distribution function is of the form:

\[
p(x) = m_1f_1(x) + \ldots + m_nf_n(x) \quad \text{where} \sum m_i = 1
\]

\(m_i \) is the probability of being from the component distribution \(i \), \(f_i(x) \) is the probability distribution function of component distribution \(i \), and \(n \) is the number of component distributions being mixed \((61:1)\). In the case where only two component distributions exist, the parameters can be defined simply as \(m \) and \((1- m)\).

The Mixed Generalized Gamma Distribution considered in this thesis is a bimodal mix of the Generalized Gamma Distribution. The probability density function for the Mixed Generalized Gamma Distribution is as follows:

\[
f(x) = m \left(\frac{p_1(x-c_1)^{b_1-1} \cdot e^{-[(x-c_1)/a_1]^{p_2}}}{a_1^{1-p_1} \Gamma(b_1)} \right) + (1-m) \left(\frac{p_2(x-c_2)^{b_2-1} \cdot e^{-[(x-c_2)/a_2]^{p_2}}}{a_2^{1-p_2} \Gamma(b_2)} \right)
\]

where \(a_1, a_2, b_1, b_2, p_1, p_2 > 0, \ 0 < m < 1\) and \(x \geq c_2 \geq c_1 \geq 0\).

In this equation \(c_1 \) and \(c_2 \) are the location parameters, \(a_1 \) and \(a_2 \) are scale parameters, \(b_1 \) and \(b_2 \) are shape/power parameters, \(p_1 \) and \(p_2 \) are power parameters, while \(m \) is the mixture parameter.
As an example of a Mixed Generalized Gamma Distribution probability distribution function,

Figure 2 contains three functions: \(g(x) = .5 f_1(x) + .5 f_2(x) \) where

\[
f_1(x) = \text{GGD}(0,2,1,1) \quad f_2(x) = \text{GGD}(10,2,1,4)
\]

These are equivalent to:

\[
f_1(x) = \text{Weibull}(1,2) \quad f_2(x) = \text{Weibull}(4,2) + 10 = \text{Weibull}(4,2,10)
\]

![Figure 2 PDF for a Mixture of Two Generalized Gamma Distributions](image)

The log likelihood function where \(g(\cdot) \) is the PDF for the mixture of two Generalized Gamma Distributions and \(f(\cdot) \) is the PDF for the single component Generalized Gamma Distribution is:

\[
LL = \ln \left(\prod_{i=1}^{n} g(x_i) \right)
\]

or equivalently;

\[
LL = \sum_{i=1}^{n} \ln(g(x_i))
\]
The derivatives of the log likelihood function with respect to each of the nine parameters are:

\[
\frac{dLL}{dc_i} = \sum_{i=1}^{n} \frac{m}{g(x_i)} \cdot \frac{df_i}{dc_i} \\
\frac{dLL}{da_i} = \sum_{i=1}^{n} \frac{m}{g(x_i)} \cdot \frac{df_i}{da_i} \\
\frac{dLL}{db_i} = \sum_{i=1}^{n} \frac{m}{g(x_i)} \cdot \frac{df_i}{db_i} \\
\frac{dLL}{dp_i} = \sum_{i=1}^{n} \frac{m}{g(x_i)} \cdot \frac{df_i}{dp_i} \\
\frac{dLL}{dc_2} = \sum_{i=1}^{n} \frac{1-m}{g(x_i)} \cdot \frac{df_2}{dc_2} \\
\frac{dLL}{da_2} = \sum_{i=1}^{n} \frac{1-m}{g(x_i)} \cdot \frac{df_2}{da_2} \\
\frac{dLL}{db_2} = \sum_{i=1}^{n} \frac{1-m}{g(x_i)} \cdot \frac{df_2}{db_2} \\
\frac{dLL}{dp_2} = \sum_{i=1}^{n} \frac{1-m}{g(x_i)} \cdot \frac{df_2}{dp_2} \\
\frac{dLL}{dm} = \sum_{i=1}^{n} \frac{f_1(x_i, c_1, a_1, b_1, p_1) - f_3(x_i, c_2, a_2, b_2, p_2)}{m \cdot f_1(x_i, c_1, a_1, b_1, p_1) + (1-m) \cdot f_2(x_i, c_2, a_2, b_2, p_2)}
\]

Table 3 First Derivatives of the GGD9

See Table 1 for the partial derivatives of single component with respect to its four parameters.

Research has also been done on mixing with the Generalized Gamma Distribution. In 1989, Chukwu and Gupta developed a discrete mixture using the Generalized Poisson and the three-parameter Generalized Gamma Distribution (7:319). In 1992, Radhakrishna, Rao and Anjaneyulu developed parameter estimates for the mixture of two three-parameter Generalized Gamma Distributions using moment estimates and Maximum Likelihood Estimates. (43:1799). They recommended using a method
such as Newton-Raphson to solve their Maximum Likelihood equations. They did not attempt to solve the equations, so they did not discuss any of the numerical problems that would arise from such an endeavor. It is believed that this work is the first to attempt to solve the Maximum Likelihood equations for the Mixed Generalized Gamma Distribution. Instead of using Newton-Raphson, this work used a Genetic Algorithm to maximize the Log Likelihood equation.

2.2 Genetic Algorithms

2.2.1 Introduction

Genetic Algorithms are a class of heuristic optimizing techniques that were developed in the 1970's by John Holland of the University of Michigan (59). They are a technique for finding a near optimal solution of an equation or system of equations by mirroring genetic theories of reproduction. At each generation, a fixed number of individuals exist, the “fittest” tend to survive and they reproduce better individuals through crossover. Crossover is process by which parts of two chromosomes are joined, hopefully improving the fitness of resulting generation. Mutations, which are random changes to the individual solution, keep a diverse population and prevent convergence from occurring too quickly. Mutations and crossover are operations that occur on a chromosome. In this optimization technique, the chromosomes represent candidate solutions to the objective function. An overview of the steps in a Genetic Algorithm are given below.

The Genetic Algorithm

1. Initialize a population of “chromosomes”, or possible solutions.
2. Evaluate each chromosome in the population.
3. Create new chromosomes by mating current chromosomes, applying mutation and recombination as the parent chromosomes mate.
4. Delete members of the population to make room for the new chromosomes.
5. Evaluate the new chromosomes and insert them into the population.

6. If time is up, stop and return the best chromosome; if not, go to 3 (8:5).

The most basic Genetic Algorithm contains three operations on the chromosomes: Roulette wheel selection, simple crossover, and simple mutation. The equation to be optimized or a transformation of it is called the Fitness function. The equation must always return a positive (non-zero) value, so it may be transformed to ensure this is the case. The higher the value the fitness function has, the more "fit" the solution is. This is critical to selection of individuals for the next generation.

Holland stated reproduction of a new generation uses the following three steps:

1. Reproduction according to fitness. Select strings from the current population to act as parents.
 The more fit the string, the more likely it is to be chosen as a parent. A given string of high fitness may be a parent several times over.

2. Recombination. The parent strings are paired, crossed over, and mutated to produced offspring strings.

3. Replacement. The offspring strings replace randomly chosen strings in the current population.
 The cycle is repeated over and over to produce a succession of generations (24:70).

2.2.2 Coding

Coding is the process of converting a solution into a chromosome that genetic operations can be operated on. The coding of a solution to the equation is the conversion of the decimal base solution into a base 2 solution. For an integer variable ranging from 0 to 15, four bits would be necessary. For example, in base 10, "0" is converted to "0000" in base 2, "6" is converted to "0110", and "15" is converted to "1111". For more than one variable, a technique called mapping is used (15:82). In this case, the bit positions represent different variables. For example, for integers x and y ranging from 0 to 15, a total of eight bits are used and stacked next to one another. One particular solution x=6, y=15 would with x mapped first be "01101111". The solution x=15, y=6 under this mapping scheme would be coded "11101111". For fractional representations of variables the process is similar. For example, let the base be \(\frac{1}{4} \), then the number 2\(\frac{1}{2}\) is "1010" where the bit positions represent \(\frac{1}{2}, 1, \frac{1}{4}, \frac{1}{4} \).
2.2.3 Roulette Wheel Selection

Roulette wheel selection is a method that weights the fittest individuals, so that they are more likely to be chosen for the next generation. The sum of the fitness of all individuals is calculated. The probability of selecting an individual is calculated by dividing its fitness by the sum of the fitness scores. Consider a population of three with fitness scores of 5, 8, and 7. The probability of selection is in Table 4.

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Probability</th>
<th>Selection Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5/20 (0.25)</td>
<td>0.00-0.25</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>8/20 (0.40)</td>
<td>0.26-0.65</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7/20 (0.35)</td>
<td>0.66-1.00</td>
</tr>
<tr>
<td>Sum</td>
<td>20</td>
<td>20/20</td>
<td></td>
</tr>
</tbody>
</table>

The need for all fitness values to be positive is now apparent. If any fitness value is 0 or negative, it would cause some individuals to never be selected, because it would have no probability associated with it.

The individual is selected by drawing a uniform random number between 0 and 1 and comparing it to the selection range. For example, if the random number returns a 0.553, that falls in the selection range for Individual 2, so Individual 2 is returned. This is repeated until the total number of individuals for the next generation is selected.

2.2.4 Simple Crossover

Simple crossover is an operation that modifies the chromosomes of the two children that are created from the two parents chromosomes. A random integer between 1 and n-1, where n is the number of bits in the chromosome, is selected as the site where the crossover will take place (12:62-65). For example, suppose the crossover site is “3” at the “I” below for the following:

<table>
<thead>
<tr>
<th>Parent Solution (x,y)</th>
<th>Parent Chromosome</th>
<th>Child Chromosome</th>
<th>Child Solution (x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6,15)</td>
<td>“01101111”</td>
<td>01110110</td>
<td>(7,6)</td>
</tr>
<tr>
<td>(15,6)</td>
<td>“11101011”</td>
<td>11101111</td>
<td>(14,15)</td>
</tr>
</tbody>
</table>
The probability of crossover is typically between 0.6 and 0.7 (5). When crossover does not occur, the children inherit the exact chromosomes of the parents, unless they are mutated. In the example above, without crossover the children’s chromosomes will be “01101111” and “11110110”.

2.2.5 Simple Mutation

Simple mutation is the last operator on the chromosome. When it occurs, it modifies the value at a bit position, which is also called an allele (15:65). For each allele, a random number is drawn. If the number is below the mutation probability, a mutation occurs. When this happens an allele value will be swapped. It may occur to a child’s chromosome whether or not it has crossed over from its parents.

Several examples with alleles to be mutated in bold follow:

<table>
<thead>
<tr>
<th>Solution (x,y)</th>
<th>Chromosome</th>
<th>Mutated Chromosome</th>
<th>Mutated Solution (x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6,15)</td>
<td>“01101111”</td>
<td>“01101011”</td>
<td>(6,11)</td>
</tr>
<tr>
<td>(7,6)</td>
<td>01110110</td>
<td>“01011110”</td>
<td>(5,14)</td>
</tr>
<tr>
<td>(15,6)</td>
<td>“11110110”</td>
<td>“11110111”</td>
<td>(15,7)</td>
</tr>
</tbody>
</table>

Mutations as can be seen above, can make either small or quite large changes in the solution based on where the mutation occurs. The purpose of mutations is to prevent the population from becoming too homogeneous too quickly and thus not considering some potentially good solutions, i.e. it prevents the solution technique from converging to a local maximum.

2.2.6 Deterministic Tournament Selection Strategy

Another method of selecting individuals is the Deterministic Tournament Selection strategy. It is particularly useful when the population is small and the law of averages doesn’t hold (29:290). First, individuals are grouped randomly and then adjacent pairs compete for selection. Two copies of the same individuals mating with each other should be avoided (29:291). The process is

1. Randomly sort the individuals.

2. Compare the fitness values of the first pair, and keep the better as the first parent.

3. Compare the fitness values of the second pair and keep the better of the second pair as the second parent.
4. Then randomly reorder the individuals and select parents for mating until the next generation is filled.

For example, assume the population on left of Table 5 has been randomly ordered. Individuals 1 and 2 would be compared and Individual 2 is selected as the first parent, since it has the higher value. Individuals 3 and 4 would be compared and Individual 3 is the second parent. Individuals 2 and 3 have been chosen to mate with each other. Similarly, after reordering, in the population on the right Individuals 3 and 4 will be selected.

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Individual</th>
<th>Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

2.2.7 Parameter Settings

Genetic Algorithm searches are highly sensitive to their parameter settings. Their settings greatly affect how well a GA performs. Performance measures include how long it takes to find a solution and how good a solution can be found. Greffenstette studied optimizing the control parameters of Genetic Algorithms (17:5-11). Although there are a large class of GA's, many can be described using five parameters, as shown in Table 6. The discussion in the following section will present a summary of his parameter descriptions.

<table>
<thead>
<tr>
<th>Parameter Code</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Population Size</td>
</tr>
<tr>
<td>C</td>
<td>Crossover Rate</td>
</tr>
<tr>
<td>M</td>
<td>Mutation Rate</td>
</tr>
<tr>
<td>G</td>
<td>Generation Gap</td>
</tr>
<tr>
<td>S</td>
<td>Selection Strategy</td>
</tr>
</tbody>
</table>

The population size (N) affects both the efficiency and the performance of the GA. A large population is likely to represent more areas of the sample space and thus is less likely to converge to a
suboptimal solution. However, it does require more evaluations per generation, which can drastically slow down convergence.

The crossover rate (C) controls the frequency that the crossover operator is applied. The higher the crossover rate, the more frequently new individuals are introduced into the population. If the crossover rate is too high, then high-performance individuals can be discarded. On the other hand, if the crossover rate is too low, the search may stagnate because of the lower exploration rate. It is a probability operator, so it ranges from 0 to 1.

The mutation operator (M) is a secondary search operator that gives each bit a chance of switching its value after selection. The mutation rate increases the variability of the population. A high mutation rate is essentially a random search. A low mutation rate serves to prevent any given bit position from remaining converged in the entire population. It is a probability operator, so it ranges from 0 to 1.

The generation window (G) controls the percentage of the population to be replaced at each generation. It ranges from 0 to 1. The number of individuals that are randomly chosen to survive is \(N^*(1-G) \) from one generation to the next. A value of \(G = 1.0 \) means that the entire generation is replaced during each generation.

The Selection Strategy (S) contains two possibilities. The first, when \(S = P \), is when a pure selection strategy is used. This means that each individual is reproduced proportionally to the individual’s performance. The second, when \(S = E \), is called an elitist strategy. First, the pure selection strategy is performed, but then the best individual always survives intact to the next generation. Without this strategy, the best individual can disappear because of selection, crossover or mutation.

2.2.8 Micro-Genetic Algorithms

The usual choice in population size \(N \) is usually chosen to be between 30 and 200 individuals. Micro-Genetic Algorithms (mGA) use a small sample size, far less than the typical simple Genetic Algorithm. GA’s with very small populations generally do very poorly because they have insufficient processing of the many possible solutions and thus converge to suboptimal points (29-290). In Grefenstette’s study, he showed that for small populations (20 to 40 individuals), good performance can be
obtained by combining a high crossover rate with a low mutation rate (17:10). Krishnakumar took this idea even further and developed a mGA that has a population N=5. He used a high crossover rate of C=1 and a low mutation rate of M=0 and an elitist selection strategy of S=E and a generation window of G=1 (29:291).

His work was based on the fact that simple Genetic Algorithms often prematurely converge and must rely on the mutation operator to find the optimum. It is based on the assumption that mixing the maximum possible solution spaces yields maximum performance. His mGA uses a “start and restart” procedure that avoids premature convergence by replacing individuals with new randomly generated ones once the individuals reach a convergence criteria (29:291).

2.2.9 Constrained Optimization Using Genetic Algorithms

Genetic Algorithms are often used to solve an unconstrained objective function. For a constrained problem, this function can be transformed to an unconstrained by use of a penalty function (15:85-86). An example follows:

Maximize \(g(x) \)

subject to \(h_i(x) = 0 \) for \(i=1,2..n \)

where \(x \) can be a vector

into the following unconstrained form:

\[
\max_x \left\{ g(x) - r \sum_i \Phi(h_i(x)) \right\}
\]

where \(\Phi(\cdot) \) is the penalty function

\(r \) is the penalty coefficient.

Many possibilities exist for the penalty function, but often the square of the violation is used. The value for \(r \) is often chosen so that moderate violations yield a penalty of some significance (15:85-86).
2.2.9 Initializing a Population

Previous discussion has focused on the changes from generation to generation, whether through mutation, crossover, or “restarting”. An initial population can be chosen by random or by a heuristic (17:5). In random initialization, possible solutions are randomly generated with equal probability for each allele on every generated chromosome. For example, with two possible allele settings “0” or “1” each has a 0.5 probability of being selected. A heuristic would mean that one or more individuals are created with some other rule, not specific to the Genetic Algorithm.

2.3 Maximum Likelihood Estimation

The Method of Maximum Likelihood was popularized by Fisher in the 1920's (38:2-3). The definition of likelihood from Mendenhall, Wackerly and Scheaffer (36:402) is

Let \(y_1, y_2, \ldots, y_n \) be sample observations taken on corresponding random variables \(Y_1, Y_2, \ldots, Y_n \). Then if \(Y_1, Y_2, \ldots, Y_n \) are continuous random variables the likelihood

\[
L = L(y_1, y_2, \ldots, y_n)
\]

is defined to be the joint density evaluated at \(y_1, y_2, \ldots, y_n \).

Parameters are selected so the likelihood function is maximized (36:419). This means that the likelihood function is defined as follows:

\[
L = f(x_1) \times f(x_2) \times \cdots \times f(x_n)
\]

or alternatively,

\[
L = \prod_{i=1}^{n} f(x_i)
\]

where \(f(x_i) \) above is the probability density function associated with the observation \(x_i \) and \(n \) is the sample size.

According to Law and Kelton, the Maximum-Likelihood estimators (MLEs) are used because they have useful properties not shared by other parameter estimation techniques (45:370). These include:
1. For most of the common distributions, the MLE is unique; that is, \(L(\hat{\theta}) \) is strictly greater than \(L(\theta) \) for any other value of \(\theta \).

2. Although MLEs need not be unbiased, in general, the asymptotic distribution (as \(n \to \infty \)) of \(\hat{\theta} \) has mean equal to \(\theta \).

3. MLEs are invariant; that is if \(\phi = h(\theta) \) for some function \(h \), then the MLE of \(\phi \) is \(h(\hat{\theta}) \).

 (Unbiasedness is not invariant.) For example, the variance of an Exponential(B) random variable is \(B^2 \), so the MLE of this variance is \([\bar{X}(n)]^2 \).

4. MLEs are asymptotically normally distributed; that is, \(\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{D} N(0, \vartheta(\theta)) \), where \(\vartheta(\theta) = -n / E(d^2 L / d\theta^2) \) (the expectation is with respect to \(X_i \), assuming that \(X_i \) has the hypothesized distribution) and \(\xrightarrow{D} \) denotes convergence in distribution.

 Furthermore, if \(\hat{\theta} \) is any other estimator such that \(\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{D} N(0, \sigma^2) \), then \(\vartheta(\theta) \leq \sigma^2 \). (Thus, MLEs are called best asymptotically normal.)

5. MLEs are strongly consistent; that is, \(\lim_{n \to \infty} \hat{\theta} = \theta \) (w.p.1).

L is the Likelihood equation and \(\theta \) is the vector of parameters.

2.4 Minimum Distance Estimation

In the 1950's, Wolfowitz presented a series of papers that developed the Minimum Distance method for obtaining strongly consistent parameter estimates for a distribution (25:75). His technique was to minimize the distance of the discrepancy between two distributions \(F_1 \) and \(F_2 \):

\[
\delta(F_1, F_2) = \sup_{x} |F_1(x) - F_2(x)|
\]

According to Wolfowitz, "A great utility of the Minimum Distance method is that, in a wide variety of problems, it will furnish super-consistent estimators even when classical methods, like maximum likelihood
method, fail to give consistent estimators” (38:2-7). The technique tries to minimize the distance between
the estimated cumulative density function (CDF) and the empirical density function (EDF). The EDF is a
step function created by ordering the sample data points. One plotting position for the EDF of n points
ordered \(x_{(1)}, x_{(2)}, \ldots, x_{(n)} \) is given by

\[
EDF(X) = \begin{cases}
0, & \text{if } x < x_{(1)} \\
\frac{i}{n}, & \text{if } x_{(i)} \leq x < x_{(i+1)}, \ i = 1, \ldots, (n-1) \\
1, & \text{if } x \geq x_{(n)}
\end{cases}
\]

A good estimate of the parameters for the estimated cumulative density function must be derived from
another method, such as MLE, and the better the method's estimate the better result that Minimum Distance
can give. A good initial estimate of the parameters may be obtained using the Method of Maximum
Likelihood. An example of the EDF compared to the CDF is Figure 3.

![Figure 3 Sample EDF vs. Estimated CDF](image)

A lot of work has been done with Minimum Distance, with some of it already referenced in this
thesis. In 1980, Hobbs, Moore and James used Minimum Distance to estimate the parameters for the three-
parameter Generalized Gamma Distribution (26:vi, 23:237). In 1982, Shumaker used Minimum Distance to
estimate the parameters for the four-parameter Generalized Gamma Distribution (49:22). Gallagher used Minimum Distance to estimate the parameters for the three-parameter Weibull (14). In 1986, Benton-Santo used Minimum Distance to estimate the parameters for the mixture of exponential distributions and the mixture of normal distributions (1). In 1996, Mumford used Minimum Distance to estimate the parameters for the seven-parameter Mixed Weibull(37).

2.4.1 Golden Section Search

One method of performing Minimum Distance is to vary one parameter between its upper and lower bounds, while fixing the others, to minimize the distance between the EDF and Estimated CDF. One method of conducting a constrained optimization of a single variable is called the Golden Section Search. It assumes that the function being evaluated is unimodal in the area of search. It uses an interval reduction factor based on the Fibonacci numbers (48:115-116,122-123;30:286-291). The algorithm is given by (48:115-116):

Given:

- The interval \([A,B]\), which contains the minimum value for function \(f(x)\)
- The tolerance level, Tol
- The maximum number of iterations, N

Algorithm:

1. Set Iter = 0
2. Set \(t = \frac{\sqrt{5} - 1}{2}\)
3. Set \(C = A + (1-t) \times (B-A)\)
4. Set \(F_c = f(C)\)
5. Set \(D = B - (1-t) \times (B-A)\)
6. Set \(F_d = f(D)\)
7. Repeat the next steps until \(|B-A| > Tol\) and \(Iter < N\);
7.1. Increment Iter

7.2. If \(F_c < F_d \), then set \(B = D, D = C, C = A + (1-t) \cdot (B-A), F_c = f(C) \); else set \(A = C, C = D, D = B - (1-t) \cdot (B-A), F_c = F_d \), and \(F_d = f(D) \).

8. Return \(\frac{A + B}{2} \) as the minimum if \(\text{Iter} < N \), else return an error code.

2.5 Random Variate Generation

Random variate generation for the Generalized Gamma distribution is accomplished by generating random variates from a standard gamma distribution, which are then transformed to Generalized Gamma distribution variates. Numerous techniques exist for generating gamma and standard gamma variates (6, 13, 27, 28, 33, 55, 56, 57, 59, 58, 62, 63). The probability density function for the standardized gamma distribution is

\[
f(x; \alpha) = \frac{x^{\alpha-1} \cdot \exp(-x)}{\Gamma(\alpha)}, \quad x \geq 0
\]

Four-parameter Generalized Gamma variates can be generated from a standard gamma using two transforms demonstrated by Tadikamalla (58: 199-201). The transforms are

\[x = z^{1/p}\]

and

\[y = x \cdot a - c\]

where \(z \) is the variate generated from the standardized gamma distribution and \(y \) is the final Generalized Gamma Distribution variate. The standardized gamma distribution generates its variates using the Acceptance/Rejection technique.

The Acceptance/Rejection technique requires a majorizing function, \(h(t) \) which bounds \(f(t) \) above. The majorizing equation must integrate to a finite value so that it may be scaled as a PDF. Variates are then
generated from \(h(t) \) and are then accepted or rejected so that the accepted random variates will have the PDF \(f(t) \) (33:83).

III. Methodology

This research compares two methods for estimating the parameters of the nine-parameter Mixed Generalized Gamma Distribution: Maximum Likelihood Estimation and Minimum Distance Estimation. The assumption underlying this methodology is that the distribution is from the family of nine-parameter Mixed Generalized Gamma Distributions. Monte Carlo analysis will be used to test the parameter estimation techniques. Random variates are generated from the Mixed Generalized Gamma Distribution, and then the parameters are estimated using Maximum Likelihood. The log likelihood function was maximized using a Genetic Algorithm. The Maximum Likelihood parameter estimates are then used as an initial estimate for the Minimum Distance parameter estimates. This initial estimate is then used to fix the first location parameter and the mixture parameter. This estimation technique fixes the first location and mixture parameter and solves the reduced problem using Maximum Likelihood. Samples of each size and parameter settings were generated 1000 times and then compared using an integrated mean square error (MSE), or integrated squared distance between CDFs. The number of times one technique was better than the other technique for estimating each sample was recorded. This was done to guard against a few extreme cases from dominating the comparison of the two parameter estimation techniques.

3.1 Monte Carlo Simulation

Law and Kelton define Monte Carlo simulation to be a scheme employing random numbers for solving problems in which the passage of time plays no substantive role (31:113). Monte Carlo simulation has been widely used to study the properties of robust estimators and to test their performance (26:19). By using Monte Carlo simulation, parameter estimates may be calculated and then compared to the true parameters of the underlying distribution. The basic steps in a Monte Carlo simulation for testing parameter estimation techniques are as follow:

1. Generate sample variates from the selected underlying distribution.
2. Determine the parameter estimates for each sample, using each estimation technique.

3. Compare the performance of the estimators.

Figure 4 shows an overview of the methodology.

Figure 4 Overview of Methodology
3.2 Random Variate Generation

The first random variate generator for the Generalized Gamma distribution tested was one developed by Tadikamalla, who had written several articles on generating gamma variates (55-58). His random variate generator did not produce the proper variates. It did not generate variates of the proper shape when the shape/power parameter, \(b \), was set to one. Setting \(b=1 \) defines a Weibull distribution, which is an important special case of the Generalized Gamma, particularly for reliability modeling. Although Tadikamalla’s article stated it was good for \(b>1 \), it was not good for values near one (58:200). Further research led to another standard gamma variate generator that was then transformed to the General Gamma distribution using Tadikamalla’s transformations above.

The standard gamma variate generator chosen is known as GBH, which uses the acceptance/rejection technique, and was developed by Cheng & Feast (59:229). Tadikamalla and Johnson recommended this technique when a large number of variates are going to be generated for each \(b \) (59:226). It was also chosen because variates with \(b = 1 \) can be generated. The random variate generator was then constructed and tested by generating samples of 1000 variates of selected special cases such as the Weibull, the Gamma, the Exponential and the Half-Normal. (See Table 1). Accepted Distribution fitting packages such as Weibull++ and BestFit were used to verify the generator was working properly.

In the real world, the proportions in a mixture of component distributions are not always known. The mixing proportion is distributed Uniform(0,1). The outcome of this random number draw determines the number of variates generated from each component distribution. This means that the actual proportion of variates generated from each component distribution may not equal the true mixing proportion.

3.3 Maximum Likelihood Estimation using a Genetic Algorithm

Use of a Genetic Algorithm was suggested because of the difficulties Mumford (37) had solving the maximum likelihood equations. His seven-parameter estimation solution space turned out to be flat with many local optima. The nine parameter Mixed Generalized Gamma Distribution would have these difficulties compounded since two more parameters are being estimated. Newton’s Method, which Mumford used, also requires derivative information, and can get stuck on local maximums. It was decided
to attempt to find the optimum using a Genetic Algorithm, which is less likely to get caught on a local maximum.

Since the observed data points are independent of each other, their joint probability can be calculated directly by multiplying their PDFs together. Finding the parameters that maximize their joint probability will give the parameters that have the highest likelihood that the data came from that distribution. Thus, the equation is called the likelihood function. The likelihood function \(L \) is defined below:

\[
L = \prod_{i=1}^{n} f(x_i),
\]

where \(f(\cdot) \) is the probability density function and \(n \) is the number of observed data points. This equation, though, can be difficult to differentiate and can also create numerical difficulties because it can evaluate to very small numbers that can be below a computer’s “underflow.” Therefore, the log of the likelihood function, which monotonically increases with the likelihood function, poses no such numerical difficulties, and is often easily differentiable, is used. The log likelihood \(\text{LL} \) is defined as:

\[
\text{LL} = \ln(L) = \ln\left(\prod_{i=1}^{n} f(x_i)\right)
\]

and is also equivalent to

\[
\ln(L) = \sum_{i=1}^{n} \ln(f(x_i)),
\]

where \(f(\cdot) \) is the probability density function and \(n \) is the number of observed data points.

3.3.1 Range of the Parameters

In order to use a Genetic Algorithm, upper and lower bounds on the variables being optimized must be determined. An increment size of 0.015625 was used for each of the parameters. See Table 7 for the parameter bounds.
Table 7 Parameter Bounds

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>0</td>
<td>$X_{(1)} - 0.0078125$</td>
</tr>
<tr>
<td>a_1</td>
<td>0.0078125</td>
<td>15.9921875</td>
</tr>
<tr>
<td>b_1</td>
<td>0.0078125</td>
<td>15.9921875</td>
</tr>
<tr>
<td>p_1</td>
<td>0.0078125</td>
<td>15.9921875</td>
</tr>
<tr>
<td>c_2</td>
<td>$c_1 + 0.0078125$</td>
<td>$c_1 + 15.9921875$</td>
</tr>
<tr>
<td>a_2</td>
<td>0.0078125</td>
<td>15.9921875</td>
</tr>
<tr>
<td>b_2</td>
<td>0.0078125</td>
<td>15.9921875</td>
</tr>
<tr>
<td>p_2</td>
<td>0.0078125</td>
<td>15.9921875</td>
</tr>
<tr>
<td>m</td>
<td>0.0078125</td>
<td>0.9921875</td>
</tr>
</tbody>
</table>

$X_{(1)}$ is the first order statistic of the variates, or the smallest variate, and $X_{(n)}$ is the last order statistic, or the largest variate. The c_2 parameter was penalized if it exceeded the largest variate since if $c_2 > X_{(n)}$ means the GA was fitting the observed data as a single distribution, not as a mixture. The mixture parameter m will need six bits on the chromosome. The bit positions will represent $1/2$, $1/4$, $1/8$, $1/16$, $1/32$ and $1/64$. The bits are decoded and then the lower bound is added. For example, the upper limit of the mixing parameter is coded “111111” and will equal 0.9921875. The location parameter c_1 will not be estimated by the Genetic Algorithm, but will be calculated as Max ($X_{(1)} - 0.0078125, 0$). The other parameters will require 10 bits each on the chromosome, when not fixed prior to estimation. The ten bit positions will represent $8, 4, 2, 1, 1/2$, $1/4, 1/8, 1/16, 1/32$ and $1/64$. The chromosome is decoded and the lower bound is added. For example, the upper limit on a_1 is coded “1111111111” and will equal 15.9921875.

3.3.2 Selecting GA Parameter Settings

Selection of the Genetic Algorithm’s settings greatly affect its efficiency and accuracy (17). The optimal settings are often problem dependent. Two characteristics of parameter estimation for the Mixed Generalized Gamma Distribution log likelihood function discussed below are that it will be a negative number and that it will be complex to evaluate.

First, the Mixed Generalized Gamma distribution log likelihood equation will be negative. Since probability density function will typically evaluate to a number between zero and one. Multiplying n of these PDFs together returns a value between zero and one. The natural logarithm of any number between
zero and one will have a negative natural logarithm. Thus, any solution technique used must work with negative numbers. However, the simple tournament selection requires that all values be positive. This can be resolved by transforming the negative numbers using a scaling window, though choosing the right scaling is problematic since the solution can be very sensitive to the scaling (17:7). As an example, if one individual has a fitness five times greater than another, it would have an expected five times as many offspring. Scaling can modify this in ways that are not effective. For example, consider the following scaling: \(y = 2^x(x+20) \) in Table 8

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Relative Fitness</th>
<th>Scaled Fitness</th>
<th>Related Scaled Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better</td>
<td>-1</td>
<td>5</td>
<td>38</td>
<td>1.26</td>
</tr>
<tr>
<td>Worse</td>
<td>-5</td>
<td>1</td>
<td>30</td>
<td>1</td>
</tr>
</tbody>
</table>

The Better Individual, which was previously five times more fit, is now only 1.26 times as fit. The less fit individual will reproduce relatively more with respect to the better individual as a result of the scaling. This can even eliminate the difference between fit and less-fit strings (15). One way to avoid this problem is to use a deterministic tournament selection strategy.

A Micro-Genetic Algorithm was chosen to maximize the log likelihood function of the Mixed Generalized Gamma Distribution. It typically uses fewer function evaluations than a regular Genetic Algorithm, and it can easily use a deterministic tournament selection strategy so the need to scale is eliminated. A deterministic tournament selection strategy compares the relative fitness values not the absolute fitness as the tournament selection does, so negative numbers are compared directly without any need to scale the fitness. Thus, in this work, a Micro-Genetic Algorithm was used to maximize the log likelihood equation. The population size chosen was five individuals per generation, as recommended by Krishakumar (29). One of the most referenced works on Micro-Genetic Algorithms is by Krishakumar. He states the key to making a Genetic Algorithm with a small population is as follows:

1. Randomly generate a small population.
2. Perform Genetic operations until nominal convergence (as measured by bit wise convergence or some other reasonable measure).
3. Generate a new population by transferring the best individuals of the converged population to
the new population and then generating the remaining individuals randomly.

4. Go to step 2 and repeat (29:290).

The Micro-Genetic Algorithm first randomly generated a population of five. Two sets of mates were
chosen to reproduce by crossover with probability one. An individual was not allowed to mate with itself,
as suggested by Krishakumar (29:291). The probability of mutations was zero, since enough diversity is
introduced after nominal convergence. Nominal convergence is when all the individual chromosomes are
virtually identical. This was defined to be when the all the individuals in a population had at least 95% of
the same allele structure (5). At this point, crossover no longer introduces new chromosome structures.
Therefore, four new individuals were then introduced and the best string kept as the fifth. The stopping
criteria is to check every 200th generation and then stop if the best individual has not changed after that
amount of time.

3.4 Minimum Distance

Once a parameter estimate was found using Maximum Likelihood Estimation, this estimate was
used to initiate the Minimum Distance parameter estimation technique. The other eight parameters were
held constant and the mixing parameter was varied to find where it minimized the distance between the
empirical probability function and the estimated probability distribution function. A Golden Section
Search was performed to find the function minimum. A Golden Section Search locates the minimum within
the interval using an interval reduction technique based on interval reduction (48:115). The lower bound on
the interval was the lowest value the variable could take on and the upper bound the highest, the bounds are
in Table 9.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>0.0078125</td>
<td>0.9921875</td>
</tr>
<tr>
<td>c₁</td>
<td>0</td>
<td>X(1) - 0.0078125</td>
</tr>
<tr>
<td>c₂</td>
<td>c₁ + 0.0078125</td>
<td>X(0) + 0.0078125</td>
</tr>
</tbody>
</table>
The mixture parameter \(m \) was allowed to vary and the other parameters were held constant. The value of the mixing proportion that had the smallest Anderson-Darling statistic was kept. Next, \(c_1 \) was similarly found. These two parameters were fixed. The other parameters were again estimated using Maximum Likelihood Estimation with the mixture parameter and the first location parameter fixed at their MDE values.

The Anderson-Darling statistic is one of the most powerful empirical distribution function-based tests and takes the form:

\[
A_n^2 (G_n, F_\theta) = \int_{-\infty}^{\infty} \left[G_n(x) - F_\theta(x) \right]^2 \left[F_\theta(x) [1 - F_\theta(x)] \right]^{-1} dF_\theta(x)
\]

This integral is approximated using Stephens' computational formula (54:731)

\[
A^2 = -\left\{ n \sum_{i=1}^{n} (2i - 1) \left[\ln Z_i + \ln (1 - Z_{n+1-i}) / n \right] \right\} - n
\]

where \(Z_i = F_\theta(x_i) \), \(F_\theta(x) \) is an estimated distribution using the maximum likelihood method and \(G_n \) is an empirical distribution based upon a random sample of size \(n \) that is taken from the true distribution \(G(\cdot) \) (38: 2-8 to 2-10).

Now, with the mixture parameter fixed, the \(c_1 \) location parameter was then fixed. The other parameters are estimated again using the Micro-Genetic Algorithm to find the final Minimum Distance estimate. Attempts to fix the \(c_2 \) location parameter only worsened parameter estimates, because Minimum Distance selected \(c_2 \) parameter values that were very high. The parameter estimates using the Method Of Maximum Likelihood and Method Of Minimum Distance were then compared to the true parameters that the samples were generated from using the evaluation criteria below.

3.5 Evaluation Criteria

Once the two parameter estimates for a sample of random variates have been calculated, they need to be compared so that the better method of the two may be determined. A good criteria is to compare how close each parameter estimate is to the true parameter distribution. A distance between the CDF of the
estimation technique and the CDF of the true parameters was calculated for both of the estimation
techniques. The better technique will have the smaller distance.

3.5.1 Integrated Squared Difference Between CDF's

The estimated CDF for each method is compared to the true CDF. The integrated squared distance
between the estimated CDF and the true CDF is calculated as the measure of performance. It is also known
as the Integrated Mean Squared Error. This test is used because of its effectiveness and it approximated the
theoretical Cramer-von Mises statistic (37:41). If the integrated difference is smaller for one method than
the other, then it has been a better estimate. The integration is

$$\text{dist} = \int_a^b (F(x) - G(x))^2 \, dx$$

where $F(x)$ represents the true CDF and $G(x)$ represents the estimated CDF. The lower limit of integration,
a, is the smaller of the two true location parameters. The upper limit of integration, b, is chosen to ensure
that both CDF values exceed 0.999, or an upper limit of 50, whichever is smaller (37:40-41).

The numerical integration algorithm used was Gauss-Legendre Quadrature. It integrates using the
transformation

$$\int_a^b f(x) \, dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2} t + b + a\right) \, dt$$

This integral is approximated by evaluating $f(x)$ at six points. Accuracy can be improved by
breaking the integral in subintervals, with each subinterval still requiring six function evaluations (48:81-
82,89).

The evaluation criteria is the percentage of times that the MDE was better than MLE. "Better" in
this case means having a smaller integrated distance from the true parameters than the distance the MLE
parameters were from the true parameters. This criteria was chosen because it is insensitive to outliers.
IV. Results

In order to evaluate the performance of the parameter estimation techniques, Monte Carlo simulation was performed. For each true parameter setting and sample size (n), a sample of random variates was generated from the Mixed Generalized Gamma Distribution. Parameter estimates using both techniques were then made and the MSE, or integrated distance, from each estimate to the true parameters was calculated. The distances were then compared and the technique with the smaller distance from true was considered the better. In case of a tie, MLE is better because MDE has not gained anything for the effort of refining the MLE estimate. One thousand Monte Carlo replications were run. The average distance (Ave Dist) and standard deviation of the distance (StDev Dist) are recorded in the following tables in this chapter. The percentage of times that the Minimum Distance Estimation technique (%MDE Better) had a smaller distance from the true parameters than the Maximum Likelihood Estimation were recorded. If this percentage is high, then the MDE technique has been shown to be a better estimator. Following each of the tables is a chart containing the Percent MDE Better for each sample size. The different bars at each sample size represent the different Percent MDE Better at each mixing proportion.

Special cases of the Mixed Generalized Gamma Distribution of progressing difficulty were tested to show the validity of the estimation techniques. First, the parameters for a single distribution with a known location parameter were estimated using MLE. Next, the parameters for a single distribution with unknown location parameters were estimated, using MLE and using MDE to fix the location parameter. Next, the parameters for two component mixtures of Exponential distributions and Weibull distributions with known location parameters were estimated using MLE and using MDE to fix the mixture parameter. Next, the parameters for two component mixtures of the Exponential and Weibull distributions with unknown location parameters were estimated using MLE and MDE. MDE was used to fix the mixture parameter and then the location parameter of the component distribution nearer to zero. Lastly, the parameters for the full Mixed Generalized Gamma distribution were estimated using MLE and MDE. MDE was used to fix the mixture parameter and then the location parameter of the component distribution nearer to zero. PDFs for the component distributions may be found in Appendix A.
4.1 Single Component Distribution with Known Location Results

Four special cases of the Generalized Gamma distribution were estimated. They were the Exponential, Gamma, a Weibull with a power parameter less than one, and a Weibull with a power parameter greater than one. Previous research in Minimum Distance by other authors showed that it has the most effect on estimating mixture parameters and location parameters. Since these are single component distributions (thus, no mixing parameter) with known location parameters, Minimum Distance estimation was not performed.

Several parameters were fixed prior to estimation. For all the distributions the location parameter was fixed, since it was known. It was assumed that the functional form of the component distribution was known. Therefore, for the Exponential, the parameters \(b \) and \(p \) of the GGD4 were fixed at 1; for the Gamma, the parameter \(p \) was fixed at 1, and for the Weibull, the parameter \(b \) was fixed at 1. Parameter estimation for the Weibull and Gamma was aided by use of a penalty function which penalized differences from the likelihood equation first derivatives as defined by Parr & Webster, which assumes a known location parameter (39).

Maximum Likelihood Estimation behaved exactly as expected for the four distributions. As sample size got larger, the average distance from the true distribution decreased in all cases. The standard deviation also decreased as sample size went up, which means that MLE techniques improves with sample size. This is as expected, since MLE is known to improve asymptotically. They were compared to sample results using Weibull++, which is an accepted package for estimating parameters. The results are summarized in Table 10.
Table 10 Single Component Distributions, with Known Location Parameters, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>Ave Dist</th>
<th>StDev Dist</th>
<th>Sample Estimate Using W++ or BestFit</th>
<th>Sample Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD4(0,2,1,1)</td>
<td>5</td>
<td>0.0409</td>
<td>0.1041</td>
<td>Expo(2.394)</td>
<td>0.00369</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td>20</td>
<td>0.0067</td>
<td>0.0115</td>
<td>Expo(2.055)</td>
<td>0.00009</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.0024</td>
<td>0.0035</td>
<td>Expo(1.983)</td>
<td>0.00001</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.0017</td>
<td>0.0029</td>
<td>Expo(1.914)</td>
<td>0.00025</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.0013</td>
<td>0.0019</td>
<td>Expo(1.875)</td>
<td>0.00054</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.0002</td>
<td>0.0003</td>
<td>Expo(1.949)</td>
<td>0.00008</td>
</tr>
<tr>
<td>GGD4(0,2,2,1)</td>
<td>5</td>
<td>0.0719</td>
<td>0.0524</td>
<td>Gamma(5.48,0.57)</td>
<td>0.18940</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td>20</td>
<td>0.0286</td>
<td>0.0386</td>
<td>Gamma(2.85,1.41)</td>
<td>0.00605</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.0092</td>
<td>0.018</td>
<td>Gamma(2.10,1.81)</td>
<td>0.00171</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.0066</td>
<td>0.0136</td>
<td>Gamma(2.02,1.91)</td>
<td>0.00059</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.0043</td>
<td>0.0092</td>
<td>Gamma(2.06,2.01)</td>
<td>0.00018</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.0008</td>
<td>0.0017</td>
<td>Gamma(2.14,1.77)</td>
<td>0.00220</td>
</tr>
<tr>
<td>GGD4(0,0.5,1,0.9)</td>
<td>5</td>
<td>0.4385</td>
<td>0.7672</td>
<td>Weib(0.623,0.584)</td>
<td>0.06943</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td>20</td>
<td>0.0901</td>
<td>0.1032</td>
<td>Weib(0.762,0.521)</td>
<td>0.02951</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.0344</td>
<td>0.0439</td>
<td>Weib(0.948,0.555)</td>
<td>0.01239</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.0223</td>
<td>0.0273</td>
<td>Weib(0.861,0.541)</td>
<td>0.00238</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.0178</td>
<td>0.0199</td>
<td>Weib(0.878,0.529)</td>
<td>0.00105</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.0045</td>
<td>0.0069</td>
<td>Weib(0.884,0.495)</td>
<td>0.00068</td>
</tr>
<tr>
<td>GGD9(0,2,1,2)</td>
<td>5</td>
<td>0.1214</td>
<td>0.1943</td>
<td>Weib(2.171,2.334)</td>
<td>0.01532</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td>20</td>
<td>0.0191</td>
<td>0.021</td>
<td>Weib(2.323,2.053)</td>
<td>0.00607</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.0066</td>
<td>0.0075</td>
<td>Weib(2.036,1.818)</td>
<td>0.00531</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.0044</td>
<td>0.0049</td>
<td>Weib(1.986,1.896)</td>
<td>0.00162</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.0029</td>
<td>0.0031</td>
<td>Weib(1.999,2.000)</td>
<td>0.00000</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.0006</td>
<td>0.0007</td>
<td>Weib(1.989,1.970)</td>
<td>0.00014</td>
</tr>
</tbody>
</table>

Fixed Parameters:
- Exponential; C=0,B=1,P=1
- Gamma; C=0, P=1
- Weibull; C=0,B=1

Note that the Average distance and average standard deviation are for 1000 replications, whereas the sample using Reliasoft's Weibull++ 5.0 or BestFit 1.0 is a single sample.

BestFit was used to estimate the Gamma Distributions; the other using Weibull++.

34
4.2 Single Component Distribution with Unknown Location Results

Again, four special cases of the Generalized Gamma distribution were estimated. They were the Exponential, Gamma, a Weibull with a power parameter less than one, and a Weibull with a power parameter greater than one. Minimum Distance Estimation was performed on the location parameter.

It was assumed that the functional form of the component distribution was known. Therefore, for the Exponential, the parameters b and p were fixed at 1; for the Gamma, the parameter p was fixed at 1; and for the Weibull, the parameter b was fixed at 1. The location parameter was fixed using Minimum Distance estimation. The remaining parameters were re-estimated using MLE. Parameter estimation for the Weibull and Gamma was aided by use of a penalty function which penalized differences from the first derivatives of the likelihood equation as calculated by Parr & Webster, which assumes a known location parameter (39).

Both estimation techniques improved their distance with increased sample size. MDE uses MLE as an initial estimator, so this is expected. Minimum Distance should show the most gain at smaller sample sizes, because MLE improves with increasing sample sizes. For the Exponential, MDE was significantly better than MLE for sample sizes of 5, but not for any higher sample sizes. For the Gamma, MDE was significantly better than MLE for all sample sizes. For the Weibull with shape parameter less than one, MDE provided significant improvements for sample sizes of 50 or less. For the Weibull with shape parameter greater than one, MDE provided significant improvements for sample sizes up to 100. The results are summarized in Table 11 and Figure 5.
Table 11 Single Component Distributions with Unknown Location Parameter, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE</th>
<th>MLE Ave Dist Better</th>
<th>MLE Ave Dist StDev</th>
<th>MDE Ave Dist</th>
<th>MDE Ave Dist StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD4(5,2,1,1)</td>
<td>5</td>
<td>68.6%</td>
<td>0.1144</td>
<td>0.2159</td>
<td>0.1007</td>
<td>0.1899</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td>20</td>
<td>49.2%</td>
<td>0.0096</td>
<td>0.0151</td>
<td>0.0160</td>
<td>0.0180</td>
</tr>
<tr>
<td>Exp(2,5)</td>
<td>50</td>
<td>49.4%</td>
<td>0.0029</td>
<td>0.0043</td>
<td>0.0076</td>
<td>0.0096</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>47.9%</td>
<td>0.0017</td>
<td>0.0027</td>
<td>0.0062</td>
<td>0.0079</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>45.6%</td>
<td>0.0014</td>
<td>0.0023</td>
<td>0.0048</td>
<td>0.0075</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>44.0%</td>
<td>0.0003</td>
<td>0.0004</td>
<td>0.0009</td>
<td>0.0034</td>
</tr>
<tr>
<td>GGD9(5,2,2,1)</td>
<td>5</td>
<td>100.0%</td>
<td>0.4039</td>
<td>0.3398</td>
<td>0.1975</td>
<td>0.2284</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td>20</td>
<td>94.6%</td>
<td>0.0274</td>
<td>0.0270</td>
<td>0.0186</td>
<td>0.0210</td>
</tr>
<tr>
<td>Gamma(2,2,5)</td>
<td>50</td>
<td>89.3%</td>
<td>0.0076</td>
<td>0.0070</td>
<td>0.0064</td>
<td>0.0061</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>88.4%</td>
<td>0.0048</td>
<td>0.0041</td>
<td>0.0044</td>
<td>0.0038</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>81.3%</td>
<td>0.0035</td>
<td>0.0028</td>
<td>0.0033</td>
<td>0.0027</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>66.7%</td>
<td>0.0009</td>
<td>0.0007</td>
<td>0.0009</td>
<td>0.0007</td>
</tr>
<tr>
<td>GGD4(5,2,1,0.9)</td>
<td>5</td>
<td>96.3%</td>
<td>0.2484</td>
<td>0.2209</td>
<td>0.1730</td>
<td>0.2076</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td>20</td>
<td>67.2%</td>
<td>0.0275</td>
<td>0.0356</td>
<td>0.0249</td>
<td>0.0312</td>
</tr>
<tr>
<td>Weibull(0.9,2,5)</td>
<td>50</td>
<td>55.7%</td>
<td>0.0089</td>
<td>0.0123</td>
<td>0.0096</td>
<td>0.0124</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>49.9%</td>
<td>0.0056</td>
<td>0.0070</td>
<td>0.0064</td>
<td>0.0076</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>48.4%</td>
<td>0.0040</td>
<td>0.0049</td>
<td>0.0046</td>
<td>0.0057</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>23.6%</td>
<td>0.0012</td>
<td>0.0015</td>
<td>0.0015</td>
<td>0.0028</td>
</tr>
<tr>
<td>GGD4(5,2,1,2)</td>
<td>5</td>
<td>100.0%</td>
<td>0.4437</td>
<td>0.3622</td>
<td>0.2711</td>
<td>0.3229</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td>20</td>
<td>86.8%</td>
<td>0.0409</td>
<td>0.0408</td>
<td>0.0307</td>
<td>0.0336</td>
</tr>
<tr>
<td>Weibull(2,2,5)</td>
<td>50</td>
<td>83.5%</td>
<td>0.0120</td>
<td>0.0118</td>
<td>0.0106</td>
<td>0.0106</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>76.3%</td>
<td>0.0074</td>
<td>0.0069</td>
<td>0.0069</td>
<td>0.0064</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>60.4%</td>
<td>0.0056</td>
<td>0.0051</td>
<td>0.0054</td>
<td>0.0048</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>49.3%</td>
<td>0.0010</td>
<td>0.0010</td>
<td>0.0010</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Fixed Parameters:

- Exponential; B1=1, P1=1
- Gamma; P1=1
- Weibull; B1=1

Parameters fixed by MDE:

- Location, C1, for all distributions
Figure 5 Percent MDE Better for Single Distributions
4.3 Mixture of Exponential Distributions with Known Location Results

For the case of the mixture of Exponential Distributions with known location parameters, it was assumed that the functional form of the distribution was known. Therefore, B1,P1, B2, P2 were all fixed at one. Since the location parameters were known, they were fixed at their known values of zero. The mixture parameter was fixed using the Minimum Distance Estimation.

For all tested mixtures, MDE was significantly better than MLE for samples of 5. For sample sizes larger than that, however, the results are unclear. Average distance and standard deviation for both parameter estimation techniques decrease as sample size increases. Typically, the larger the sample size, the less often MDE will beat MLE, but that is not the case here. In fact, Minimum Distance increased its percentage of wins from sample sizes of 100 to sample sizes of 500. These results are summarized in Table 12 and Figure 6.

Sample sizes of 750 were also made to compare with previous research using Minimum Distance by Benton-Santo for parameter estimation of the mixture of Exponential distributions (1:33). The Maximum Likelihood Estimators used in this thesis provided better estimates than the Method of Moments that she used. Her results showed that Minimum Distance did not help improve parameter estimation. The results in Table 13 and Figure 7 show slight improvement by Minimum Distance over Maximum Likelihood. The reason is that Maximum Likelihood provides a better estimate to begin with to initialize the Method of Minimum Distance.
Table 12 Mixture of Exponential Distributions, Known Location Parameters, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE</th>
<th>MLE Better Ave Dist</th>
<th>MLE StDev Ave Dist</th>
<th>MDE Better Ave Dist</th>
<th>MDE StDev Ave Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD9(0,0.5,1,1,0.25)</td>
<td>5</td>
<td>61.1%</td>
<td>0.1496</td>
<td>0.2814</td>
<td>0.1254</td>
<td>0.2437</td>
</tr>
<tr>
<td>Equivalent to 0.25 Expo(0.5) + 0.75 Expo(2)</td>
<td>20</td>
<td>54.9%</td>
<td>0.0361</td>
<td>0.0593</td>
<td>0.0344</td>
<td>0.0581</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>53.6%</td>
<td>0.0157</td>
<td>0.0199</td>
<td>0.0153</td>
<td>0.0187</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>48.1%</td>
<td>0.0106</td>
<td>0.0137</td>
<td>0.0109</td>
<td>0.0141</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>48.2%</td>
<td>0.0086</td>
<td>0.0115</td>
<td>0.0090</td>
<td>0.0128</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>52.2%</td>
<td>0.0022</td>
<td>0.0026</td>
<td>0.0021</td>
<td>0.0026</td>
</tr>
<tr>
<td>GGD9(0,0.5,1,1,0.5)</td>
<td>5</td>
<td>57.7%</td>
<td>0.2399</td>
<td>0.5117</td>
<td>0.2141</td>
<td>0.4859</td>
</tr>
<tr>
<td>Equivalent to 0.50 Expo(0.5) + 0.50 Expo(2)</td>
<td>20</td>
<td>51.8%</td>
<td>0.0539</td>
<td>0.0894</td>
<td>0.0518</td>
<td>0.0839</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50.2%</td>
<td>0.0191</td>
<td>0.0274</td>
<td>0.0197</td>
<td>0.0306</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>53.3%</td>
<td>0.0126</td>
<td>0.0154</td>
<td>0.0127</td>
<td>0.0158</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>52.4%</td>
<td>0.0109</td>
<td>0.0145</td>
<td>0.0109</td>
<td>0.0147</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>56.0%</td>
<td>0.0022</td>
<td>0.0027</td>
<td>0.0021</td>
<td>0.0025</td>
</tr>
<tr>
<td>GGD9(0,0.5,1,1,0.75)</td>
<td>5</td>
<td>55.1%</td>
<td>0.2799</td>
<td>0.5469</td>
<td>0.2526</td>
<td>0.4957</td>
</tr>
<tr>
<td>Equivalent to 0.75 Expo(0.5) + 0.25 Expo(2)</td>
<td>20</td>
<td>47.9%</td>
<td>0.0617</td>
<td>0.1140</td>
<td>0.0617</td>
<td>0.1141</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50.5%</td>
<td>0.0211</td>
<td>0.0364</td>
<td>0.0216</td>
<td>0.0381</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>54.3%</td>
<td>0.0150</td>
<td>0.0253</td>
<td>0.0148</td>
<td>0.0240</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>51.5%</td>
<td>0.0098</td>
<td>0.0147</td>
<td>0.0095</td>
<td>0.0138</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>53.5%</td>
<td>0.0020</td>
<td>0.0027</td>
<td>0.0019</td>
<td>0.0024</td>
</tr>
</tbody>
</table>

Fixed Parameters:

Mixed Exponential; C1=0, B1=1, P1=1, C2=0, B2=1, P1=1

Parameters fixed by MDE:

Mixed Exponential; M
<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>% MD</th>
<th>MLE Ave Dist</th>
<th>MLE StDev Ave Dist</th>
<th>MDE Ave Dist</th>
<th>MDE StDev Ave Dist</th>
<th>Benton-Santo Ave Dist</th>
<th>Benton-Santo MDE Ave Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD9(0,0.5,1,1, 0,1,1,1, 0.25) Equivalent to 0.25 Expo(0.5) + 0.75 Expo(1)</td>
<td>750</td>
<td>50.4%</td>
<td>0.00091</td>
<td>0.00112</td>
<td>0.00090</td>
<td>0.00110</td>
<td>0.101567</td>
<td>0.105536</td>
</tr>
<tr>
<td>GGD9(0,0.5,1,1; 0,1,1,1; 0.5) Equivalent to 0.50 Expo(0.5) + 0.50 Expo(1)</td>
<td>750</td>
<td>52.3%</td>
<td>0.00038</td>
<td>0.00042</td>
<td>0.00037</td>
<td>0.00041</td>
<td>0.0862087</td>
<td>0.0910827</td>
</tr>
<tr>
<td>GGD9(0,0.5,1,1; 0,1,1,1; 0.75) Equivalent to 0.75 Expo(0.5) + 0.25 Expo(1)</td>
<td>750</td>
<td>51.4%</td>
<td>0.00048</td>
<td>0.00083</td>
<td>0.00048</td>
<td>0.00081</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GGD9(0,2,1,1, 0,0.5,1,1, 0.25) Equivalent to 0.25 Expo(2) + 0.75 Expo(0.5)</td>
<td>750</td>
<td>54.6%</td>
<td>0.00138</td>
<td>0.00193</td>
<td>0.00128</td>
<td>0.00164</td>
<td>0.0134047</td>
<td>0.0159149</td>
</tr>
<tr>
<td>GGD9(0,2,1,1, 0,0.5,1,1, 0.5) Equivalent to 0.50 Expo(2) + 0.50 Expo(0.5)</td>
<td>750</td>
<td>52.7%</td>
<td>0.00116</td>
<td>0.00148</td>
<td>0.00113</td>
<td>0.00143</td>
<td>0.0208788</td>
<td>0.0281973</td>
</tr>
<tr>
<td>GGD9(0,2,1,1, 0,0.5,1,1, 0.75) Equivalent to 0.75 Expo(2) + 0.25 Expo(0.5)</td>
<td>750</td>
<td>51.5%</td>
<td>0.00123</td>
<td>0.00143</td>
<td>0.00118</td>
<td>0.00136</td>
<td>0.0339208</td>
<td>0.0428782</td>
</tr>
<tr>
<td>GGD9(0.5,1,1, 0,0.5,1,1, 0.25) Equivalent to 0.25 Expo(3) + 0.75 Expo(0.5)</td>
<td>750</td>
<td>52.1%</td>
<td>0.00111</td>
<td>0.00158</td>
<td>0.00105</td>
<td>0.00132</td>
<td>0.0073279</td>
<td>0.011018</td>
</tr>
<tr>
<td>GGD9(0.5,1,1, 0,0.5,1,1, 0.5) Equivalent to 0.50 Expo(3) + 0.50 Expo(0.5)</td>
<td>750</td>
<td>52.2%</td>
<td>0.00129</td>
<td>0.00147</td>
<td>0.00127</td>
<td>0.00145</td>
<td>0.136226</td>
<td>0.0265675</td>
</tr>
<tr>
<td>GGD9(0.5,1,1, 0,0.5,1,1, 0.75) Equivalent to 0.75 Expo(3) + 0.25 Expo(0.5)</td>
<td>750</td>
<td>55.7%</td>
<td>0.00118</td>
<td>0.00129</td>
<td>0.00113</td>
<td>0.00128</td>
<td>0.0235877</td>
<td>0.0381142</td>
</tr>
</tbody>
</table>

Fixed Parameters:

Mixed Exponential; C1=0, B1=1, P1=1, C2=0, B2=1, P1=1

Parameters fixed by MDE:

Mixed Exponential; M

Benton-Santo used Method of Moments instead of MLE. She used 500 replications and only calculated the

Mean Square Error for the mixing proportion estimates. Her distance estimate was defined as

\[MSE = \sqrt{\frac{1}{500} \sum_{i=1}^{500} (m_i - m)^2} \] (1:29.33).
Figure 6 Percent MDE Better for Mixture of Exponentials with Known Locations

Figure 7 Percent MDE Better for Mix of Exponentials, 750 Variates
4.4 Mixture of Weibull Distributions with Known Locations Results

For the case of the mixture of Weibull distributions with known location parameters, it was assumed that the functional form of the distribution was known. Therefore, the shape/power parameters b_1 and b_2 were fixed at 1. A Maximum Likelihood Estimate was calculated. The mixture parameter was fixed using Minimum Distance and the remaining parameters re-estimated using Maximum Likelihood. Although a penalty function was tested to force the derivatives of the log likelihood function to zero, it did not appear to help with the estimates, thus the estimates were calculated without a penalty function.

Average distances and standard deviations of distance decreased for both Maximum Likelihood and for Minimum Distance as sample size increased. Minimum Distance showed that for this distribution it improved the estimates for all sample sizes for a large percentage of the replications run. The results are summarized in Table 14 and Figure 8.
Table 14 Mixture of Weibull Distributions, Known Locations, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE</th>
<th>MLE Ave Dist</th>
<th>MLE Stdev</th>
<th>MDE Ave Dist</th>
<th>MDE Stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD9(0.4,1,0.5, 0,1,1,0.5, 0.25)</td>
<td>5</td>
<td>56.0%</td>
<td>0.8419</td>
<td>5.5058</td>
<td>0.5126</td>
<td>2.5931</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>20</td>
<td>69.3%</td>
<td>0.0930</td>
<td>0.6888</td>
<td>0.0493</td>
<td>0.2710</td>
</tr>
<tr>
<td>0.25 Weibull(0.5,4) +</td>
<td>50</td>
<td>61.4%</td>
<td>0.0279</td>
<td>0.1099</td>
<td>0.0144</td>
<td>0.0560</td>
</tr>
<tr>
<td>0.75 Weibull(0.5,1)</td>
<td>75</td>
<td>67.6%</td>
<td>0.0239</td>
<td>0.2033</td>
<td>0.0124</td>
<td>0.1177</td>
</tr>
<tr>
<td>0.25 Weibull(0.5,4) +</td>
<td>100</td>
<td>69.1%</td>
<td>0.0188</td>
<td>0.1724</td>
<td>0.0109</td>
<td>0.1414</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>500</td>
<td>63.7%</td>
<td>0.0021</td>
<td>0.0057</td>
<td>0.0014</td>
<td>0.0038</td>
</tr>
<tr>
<td>GGD9(0.4,1,0.5, 0,1,1,0.5, 0.5)</td>
<td>5</td>
<td>60.0%</td>
<td>0.7112</td>
<td>4.5078</td>
<td>0.4976</td>
<td>3.0340</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>20</td>
<td>74.6%</td>
<td>0.1358</td>
<td>0.8827</td>
<td>0.0603</td>
<td>0.7216</td>
</tr>
<tr>
<td>0.50 Weibull(0.5,4) +</td>
<td>50</td>
<td>71.3%</td>
<td>0.0180</td>
<td>0.0533</td>
<td>0.0107</td>
<td>0.0278</td>
</tr>
<tr>
<td>0.50 Weibull(0.5,1)</td>
<td>75</td>
<td>68.7%</td>
<td>0.0160</td>
<td>0.0486</td>
<td>0.0081</td>
<td>0.0202</td>
</tr>
<tr>
<td>0.50 Weibull(0.5,1)</td>
<td>100</td>
<td>68.9%</td>
<td>0.0114</td>
<td>0.0621</td>
<td>0.0070</td>
<td>0.0575</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>500</td>
<td>64.5%</td>
<td>0.0019</td>
<td>0.0038</td>
<td>0.0014</td>
<td>0.0068</td>
</tr>
<tr>
<td>GGD9(0.4,1,0.5, 0,1,1,0.5, 0.75)</td>
<td>5</td>
<td>65.4%</td>
<td>1.1710</td>
<td>8.3871</td>
<td>0.9754</td>
<td>10.2107</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>20</td>
<td>74.9%</td>
<td>0.0894</td>
<td>0.6536</td>
<td>0.0412</td>
<td>0.2613</td>
</tr>
<tr>
<td>0.25 Weibull(0.5,4) +</td>
<td>50</td>
<td>71.9%</td>
<td>0.0221</td>
<td>0.0804</td>
<td>0.0095</td>
<td>0.0176</td>
</tr>
<tr>
<td>0.75 Weibull(0.5,1)</td>
<td>75</td>
<td>70.6%</td>
<td>0.0197</td>
<td>0.1580</td>
<td>0.0081</td>
<td>0.0320</td>
</tr>
<tr>
<td>0.75 Weibull(0.5,1)</td>
<td>100</td>
<td>70.6%</td>
<td>0.0128</td>
<td>0.0749</td>
<td>0.0059</td>
<td>0.0274</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>500</td>
<td>62.5%</td>
<td>0.0015</td>
<td>0.0031</td>
<td>0.0009</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

Fixed Parameters:

- Mixed Weibull; C1=0, B1=1, C2=0, B2=1

Parameters fixed by MDE:

- Mixed Weibull; M
Figure 8 Percent MDE Better for Weibulls with Known Locations
4.5 Mixture of Exponentials with Unknown Locations Results

For the case of mixtures of Exponentials with unknown locations, it was assumed that the functional form of the distribution was known. Therefore, B1, P1, B2, P2 were all fixed at one. A Maximum Likelihood Estimate was found. The mixture parameter was fixed using Minimum Distance Estimation. Next, the smaller location parameter was fixed using Minimum Distance. The remaining parameters were then re-estimated.

Average Distance and standard deviation for both estimation techniques decreased with increasing sample size. Minimum Distance showed significant improvement in sample sizes of 5. It provided no significant improvements for sample sizes larger than that. The results are summarized in Table 15 and Figure 9.
Table 15 Mixture of Exponentials with Unknown Location Parameters, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE</th>
<th>MLE Ave Dist</th>
<th>MLE StDev Ave</th>
<th>MDE Ave Dist</th>
<th>MDE StDev Ave</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD9(5,0.5,1,1, 10,0,5,1,1, 0.25)</td>
<td>5</td>
<td>64.0%</td>
<td>2.2724</td>
<td>7.6746</td>
<td>1.1175</td>
<td>7.5779</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 Expo(0.5,5)</td>
<td>20</td>
<td>37.6%</td>
<td>0.1618</td>
<td>0.1531</td>
<td>0.2599</td>
<td>0.2006</td>
</tr>
<tr>
<td>+ 0.75 Expo(0.5,10)</td>
<td>50</td>
<td>45.1%</td>
<td>0.0927</td>
<td>0.0709</td>
<td>0.1081</td>
<td>0.0982</td>
</tr>
<tr>
<td>75</td>
<td>45.9%</td>
<td>0.0811</td>
<td>0.0620</td>
<td>0.0867</td>
<td>0.0730</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>45.5%</td>
<td>0.0797</td>
<td>0.0604</td>
<td>0.0797</td>
<td>0.0667</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>50.2%</td>
<td>0.0642</td>
<td>0.0517</td>
<td>0.0529</td>
<td>0.0601</td>
<td></td>
</tr>
<tr>
<td>GGD9(5,0.5,1,1, 10,0.5,1,1, 0.5)</td>
<td>5</td>
<td>80.2%</td>
<td>1.4787</td>
<td>3.4304</td>
<td>0.4949</td>
<td>1.1731</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 Expo(0.5,5)</td>
<td>20</td>
<td>30.5%</td>
<td>0.1354</td>
<td>0.1008</td>
<td>0.2278</td>
<td>0.1374</td>
</tr>
<tr>
<td>+ 0.50 Expo(0.5,10)</td>
<td>50</td>
<td>33.8%</td>
<td>0.0494</td>
<td>0.0424</td>
<td>0.0899</td>
<td>0.0922</td>
</tr>
<tr>
<td>75</td>
<td>32.7%</td>
<td>0.0330</td>
<td>0.0383</td>
<td>0.0577</td>
<td>0.0632</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>37.2%</td>
<td>0.0302</td>
<td>0.0353</td>
<td>0.0462</td>
<td>0.0503</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>43.6%</td>
<td>0.0181</td>
<td>0.0296</td>
<td>0.0215</td>
<td>0.0361</td>
<td></td>
</tr>
<tr>
<td>GGD9(5,0.5,1,1, 10,0.5,1,1, 0.75)</td>
<td>5</td>
<td>82.8%</td>
<td>1.3638</td>
<td>2.2765</td>
<td>0.4414</td>
<td>0.4302</td>
</tr>
<tr>
<td>Equivalent to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75 Expo(0.5,5)</td>
<td>20</td>
<td>28.3%</td>
<td>0.1348</td>
<td>0.1169</td>
<td>0.2171</td>
<td>0.1114</td>
</tr>
<tr>
<td>+ 0.25 Expo(0.5,10)</td>
<td>50</td>
<td>26.4%</td>
<td>0.0451</td>
<td>0.0406</td>
<td>0.1129</td>
<td>0.1011</td>
</tr>
<tr>
<td>75</td>
<td>23.5%</td>
<td>0.0260</td>
<td>0.0293</td>
<td>0.0767</td>
<td>0.0873</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>28.7%</td>
<td>0.0188</td>
<td>0.0237</td>
<td>0.0487</td>
<td>0.0640</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>37.1%</td>
<td>0.0157</td>
<td>0.0307</td>
<td>0.0191</td>
<td>0.0277</td>
<td></td>
</tr>
</tbody>
</table>

Fixed Parameters:

Mixed Exponential; B1=1, P1=1, B2=1, P1=1

Parameters fixed by MDE:

Mixed Exponential; M, Cl
Figure 9 Percent MDE Better for Mixture of Exponentials, Unknown Locations
4.6 Mixture of Weibull Distributions with Unknown Locations Results

For the case of mixture of Weibull distributions with unknown location parameters, it was assumed that the functional form of the distribution was known. Therefore, B1 and B2 were fixed at one. The other parameters were estimated using MLE. The mixture parameter was fixed using Minimum Distance Estimation, then the smaller location parameter was fixed using MLE. The remaining parameters were re-estimated using MLE.

Three types of mixtures of Weibull distributions were estimated. The first was a widely separated mixture of two Weibull distributions with power parameter less than one. The second was a widely separated mixture of two Weibull distributions with power parameter greater than one. The third was a non-separated mixture of two Weibull distributions with different scale parameters. For the widely separated mixtures, MDE improved the parameter estimations over MLE. Surprisingly, for some small sample sizes for Weibull distributions with power less than one, MDE did not appear to improve the estimation, whereas it did for higher sample sizes. For the mixture of two non-separated Weibull distributions, MDE did not appear to help improve the estimates too much. The results are summarized in Table 16, 17, and 18 and in Figure 10, 11 and 12.
Table 16 Mixture of Non-Separated Weibull Distributions, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE</th>
<th>MLE Ave Better Dist</th>
<th>MLE Ave Dist</th>
<th>MDE Ave Better Dist</th>
<th>MDE Ave Dist</th>
<th>Mumford Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD9(5,4,1,0.5, 5,1,1,0,5, 0.1)</td>
<td>5</td>
<td>49.4%</td>
<td>13.4865</td>
<td>189.1606</td>
<td>9.5115</td>
<td>114.2607</td>
<td>-</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>53.4%</td>
<td>8.7929</td>
<td>129.3095</td>
<td>4.6741</td>
<td>46.6752</td>
<td>53.5%</td>
</tr>
<tr>
<td>0.1 Weibull (0.5,4,5) +</td>
<td>20</td>
<td>58.5%</td>
<td>1.4275</td>
<td>57.0811</td>
<td>9.2331</td>
<td>2.5644</td>
<td>6.3840</td>
</tr>
<tr>
<td>0.9 Weibull (0.5,1,5)</td>
<td>50</td>
<td>59.9%</td>
<td>1.9690</td>
<td>26.1039</td>
<td>0.7328</td>
<td>7.3919</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>50.9%</td>
<td>1.8295</td>
<td>19.5849</td>
<td>0.4764</td>
<td>2.3463</td>
<td>42.8%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>49.2%</td>
<td>13.4865</td>
<td>189.1606</td>
<td>9.5115</td>
<td>114.2607</td>
<td>-</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>53.4%</td>
<td>8.7929</td>
<td>129.3095</td>
<td>4.6741</td>
<td>46.6752</td>
<td>53.5%</td>
</tr>
<tr>
<td>0.3 Weibull (0.5,4,5) +</td>
<td>20</td>
<td>59.1%</td>
<td>1.7274</td>
<td>10.1159</td>
<td>1.5340</td>
<td>6.8951</td>
<td>55.2%</td>
</tr>
<tr>
<td>0.7 Weibull (0.5,1,5)</td>
<td>50</td>
<td>52.1%</td>
<td>1.2914</td>
<td>9.7886</td>
<td>0.4992</td>
<td>1.5360</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>45.2%</td>
<td>17.4282</td>
<td>516.9004</td>
<td>0.9029</td>
<td>17.6258</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>40.9%</td>
<td>0.7900</td>
<td>8.9131</td>
<td>0.4304</td>
<td>3.1905</td>
<td>56.3%</td>
</tr>
<tr>
<td>GGD9(5,4,1,0,5, 5,1,1,0,5, 0.3)</td>
<td>5</td>
<td>46.2%</td>
<td>18.5703</td>
<td>502.2032</td>
<td>3.9883</td>
<td>16.4149</td>
<td>-</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>52.1%</td>
<td>3.6366</td>
<td>48.8797</td>
<td>2.3246</td>
<td>6.8973</td>
<td>55.2%</td>
</tr>
<tr>
<td>0.3 Weibull (0.5,4,5) +</td>
<td>20</td>
<td>59.1%</td>
<td>1.7274</td>
<td>10.1159</td>
<td>1.5340</td>
<td>6.8951</td>
<td>55.6%</td>
</tr>
<tr>
<td>0.7 Weibull (0.5,1,5)</td>
<td>50</td>
<td>52.1%</td>
<td>1.2914</td>
<td>9.7886</td>
<td>0.4992</td>
<td>1.5360</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>45.2%</td>
<td>17.4282</td>
<td>516.9004</td>
<td>0.9029</td>
<td>17.6258</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>40.9%</td>
<td>0.7900</td>
<td>8.9131</td>
<td>0.4304</td>
<td>3.1905</td>
<td>56.3%</td>
</tr>
<tr>
<td>GGD9(5,4,1,0,5, 5,1,1,0,5, 0.5)</td>
<td>5</td>
<td>47.9%</td>
<td>16.8482</td>
<td>304.9816</td>
<td>4.0251</td>
<td>24.0798</td>
<td>-</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>52.7%</td>
<td>1.2135</td>
<td>3.9290</td>
<td>2.3620</td>
<td>9.9836</td>
<td>93.2%</td>
</tr>
<tr>
<td>0.5 Weibull (0.5,4,5) +</td>
<td>20</td>
<td>57.0%</td>
<td>1.5634</td>
<td>14.2040</td>
<td>1.2442</td>
<td>5.6163</td>
<td>98.1%</td>
</tr>
<tr>
<td>0.5 Weibull (0.5,1,5)</td>
<td>50</td>
<td>45.7%</td>
<td>0.5765</td>
<td>4.0628</td>
<td>0.4739</td>
<td>1.8064</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>41.7%</td>
<td>1.8968</td>
<td>23.1605</td>
<td>0.3687</td>
<td>1.1389</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>41.3%</td>
<td>0.2024</td>
<td>1.0878</td>
<td>0.2801</td>
<td>0.5711</td>
<td>99.0%</td>
</tr>
</tbody>
</table>

Fixed Parameters:

Mixed Weibull; B1=1, B2=1

Parameters fixed by MDE:

Mixed Weibull; M, C1

Mumford used a variety of Minimum Distance settings (37:42-44,50).
Table 17: Mixture of Widely Separated Weibull Distributions with Power <1, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE Better</th>
<th>MLE Ave Dist</th>
<th>MLE StDev Ave Dist</th>
<th>MDE Ave Dist</th>
<th>MDE StDev Ave Dist</th>
<th>Mumford %MDE Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGĐ9(5,0.5,1,0.9, 10,0.5,1,0.9, 0.1)</td>
<td>5</td>
<td>59.5%</td>
<td>16.1714</td>
<td>108.6143</td>
<td>4.4572</td>
<td>13.9817</td>
<td>-</td>
</tr>
<tr>
<td>Equivalent to</td>
<td></td>
<td>84.5%</td>
<td>7.5789</td>
<td>40.5318</td>
<td>1.6038</td>
<td>9.9351</td>
<td>86.3%</td>
</tr>
<tr>
<td>0.1 Weibull (0.9,0.5,5) +</td>
<td>10</td>
<td>94.4%</td>
<td>8.2328</td>
<td>76.6810</td>
<td>0.6658</td>
<td>2.4105</td>
<td>82.0%</td>
</tr>
<tr>
<td>0.9 Weibull (0.9,0.5,10)</td>
<td>20</td>
<td>98.5%</td>
<td>7.9524</td>
<td>105.5130</td>
<td>0.5657</td>
<td>3.6631</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>98.0%</td>
<td>17.3993</td>
<td>314.9763</td>
<td>0.5450</td>
<td>2.2690</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>98.4%</td>
<td>8.1671</td>
<td>89.3714</td>
<td>0.4679</td>
<td>1.1362</td>
<td>84.6%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>98.4%</td>
<td>8.1671</td>
<td>89.3714</td>
<td>0.4679</td>
<td>1.1362</td>
<td>84.6%</td>
</tr>
<tr>
<td>GGĐ9(5,0.5,1,0.9, 10,0.5,1,0.9, 0.3)</td>
<td>5</td>
<td>49.5%</td>
<td>28.7628</td>
<td>179.1810</td>
<td>5.8101</td>
<td>23.8569</td>
<td>-</td>
</tr>
<tr>
<td>Equivalent to</td>
<td></td>
<td>65.8%</td>
<td>7.9255</td>
<td>40.4792</td>
<td>2.0909</td>
<td>7.6177</td>
<td>41.3%</td>
</tr>
<tr>
<td>0.3 Weibull (0.9,0.5,5) +</td>
<td>10</td>
<td>76.6%</td>
<td>34.5906</td>
<td>808.7572</td>
<td>1.1381</td>
<td>4.5695</td>
<td>45.9%</td>
</tr>
<tr>
<td>0.7 Weibull (0.9,0.5,10)</td>
<td>20</td>
<td>89.5%</td>
<td>9.1949</td>
<td>101.6483</td>
<td>0.6468</td>
<td>2.6552</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>92.0%</td>
<td>4.6411</td>
<td>28.8257</td>
<td>0.6453</td>
<td>3.4988</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>93.4%</td>
<td>4.6851</td>
<td>27.5269</td>
<td>0.5303</td>
<td>3.5554</td>
<td>51.9%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>93.4%</td>
<td>4.6851</td>
<td>27.5269</td>
<td>0.5303</td>
<td>3.5554</td>
<td>51.9%</td>
</tr>
<tr>
<td>GGĐ9(5,0.5,1,0.9, 10,0.5,1,0.9, 0.5)</td>
<td>5</td>
<td>44.6%</td>
<td>18.1195</td>
<td>136.0094</td>
<td>6.2287</td>
<td>19.1815</td>
<td>-</td>
</tr>
<tr>
<td>Equivalent to</td>
<td></td>
<td>49.0%</td>
<td>8.4700</td>
<td>43.1619</td>
<td>3.9416</td>
<td>22.3347</td>
<td>86.3%</td>
</tr>
<tr>
<td>0.5 Weibull (0.9,0.5,5) +</td>
<td>10</td>
<td>57.3%</td>
<td>7.1467</td>
<td>56.5441</td>
<td>1.5195</td>
<td>3.2892</td>
<td>82.0%</td>
</tr>
<tr>
<td>0.5 Weibull (0.9,0.5,10)</td>
<td>20</td>
<td>65.9%</td>
<td>10.2961</td>
<td>139.5968</td>
<td>2.3714</td>
<td>30.1318</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>67.0%</td>
<td>16.0948</td>
<td>232.5186</td>
<td>0.7965</td>
<td>1.8866</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>67.6%</td>
<td>9.2925</td>
<td>78.4555</td>
<td>0.9382</td>
<td>6.0059</td>
<td>84.6%</td>
</tr>
</tbody>
</table>

Fixed Parameters:

Mixed Weibull; $B_1 = 1, B_2 = 1$

Parameters fixed by MDE:

Mixed Weibull; M, C_1

Mumford used a variety of Minimum Distance settings (37:42-44,52).
Table 18 Mixture of Widely Separated Weibull Distributions with Power >1, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE</th>
<th>MLE Better Ave Dist</th>
<th>MLE Ave Dist</th>
<th>MDE Better Ave Dist</th>
<th>MDE Ave Dist</th>
<th>MDE StDev Ave Dist</th>
<th>Mumford</th>
<th>%MDE Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD9(5,0.5,1,3, 10,0.5,1,3, 0.1)</td>
<td>5</td>
<td>80.0%</td>
<td>10.5399</td>
<td>134.3711</td>
<td>2.3503</td>
<td>13.4631</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>74.6%</td>
<td>5.8005</td>
<td>64.5266</td>
<td>0.9938</td>
<td>3.3484</td>
<td>60.9%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.1 Weibull (3,0.5,5) +</td>
<td>20</td>
<td>78.3%</td>
<td>4.3341</td>
<td>48.4001</td>
<td>0.7052</td>
<td>0.8290</td>
<td>44.2%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.9 Weibull (3,0.5,10)</td>
<td>50</td>
<td>82.4%</td>
<td>3.6058</td>
<td>37.0374</td>
<td>0.6286</td>
<td>0.7245</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>84.3%</td>
<td>10.7920</td>
<td>164.8084</td>
<td>0.5922</td>
<td>0.4017</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>85.4%</td>
<td>15.8059</td>
<td>274.6573</td>
<td>0.5867</td>
<td>0.7261</td>
<td>28.4%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GGD9(5,0.5,1,3, 10,0.5,1,3, 0.3)</td>
<td>5</td>
<td>68.4%</td>
<td>40.1347</td>
<td>662.1318</td>
<td>50.5883</td>
<td>1423.6050</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>74.9%</td>
<td>5.0686</td>
<td>72.9993</td>
<td>1.8382</td>
<td>9.2338</td>
<td>41.6%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.3 Weibull (3,0.5,5) +</td>
<td>20</td>
<td>76.0%</td>
<td>3.0514</td>
<td>29.3728</td>
<td>1.1222</td>
<td>3.7143</td>
<td>29.0%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.7 Weibull (3,0.5,10)</td>
<td>50</td>
<td>85.7%</td>
<td>22.0531</td>
<td>602.9458</td>
<td>0.6748</td>
<td>0.9315</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>79.4%</td>
<td>8.9066</td>
<td>58.4360</td>
<td>4.0360</td>
<td>26.7977</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>87.0%</td>
<td>15.1667</td>
<td>196.6024</td>
<td>0.6447</td>
<td>0.7103</td>
<td>39.6%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GGD9(5,0.5,1,3, 10,0.5,1,3, 0.5)</td>
<td>5</td>
<td>68.1%</td>
<td>18.7441</td>
<td>286.7962</td>
<td>2.9921</td>
<td>11.6497</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>77.7%</td>
<td>4.3577</td>
<td>47.6659</td>
<td>1.9486</td>
<td>7.5849</td>
<td>82.8%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.5 Weibull (3,0.5,5) +</td>
<td>20</td>
<td>83.9%</td>
<td>4.3289</td>
<td>57.9696</td>
<td>0.9862</td>
<td>2.3134</td>
<td>86.9%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.5 Weibull (3,0.5,10)</td>
<td>50</td>
<td>88.1%</td>
<td>2.3438</td>
<td>21.3958</td>
<td>0.7094</td>
<td>2.3961</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>89.5%</td>
<td>4.8142</td>
<td>64.7030</td>
<td>28.0315</td>
<td>866.4996</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>90.8%</td>
<td>14.5109</td>
<td>265.0473</td>
<td>0.5774</td>
<td>0.6980</td>
<td>94.7%</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Fixed Parameters:

- Mixed Weibull; B1=1, B2=1
- Parameters fixed by MDE:
 - Mixed Weibull; M, CI

Mumford used a variety of Minimum Distance settings (37:42-44,51).
Figure 10 Percent MDE Better for Mixture of Non-Separated Weibulls, Unknown Locations

Figure 11 Percent MDE Better for Widely Separated Weibulls, Power < 1, Unknown Locations
Figure 12 Percent MDE Better for Widely Separated Weibulls Power > 1, Unknown Locations
4.7 Mixture of Generalized Gamma Distribution Results

For the case of the mixture of Generalized Gamma Distributions. It was assumed that the functional form of the distribution was known. No parameters were fixed prior to estimation. All the parameters were estimated using MLE. The mixture parameter was fixed using Minimum Distance, and then the smaller location parameter was fixed using Minimum Distance. The remaining parameters were re-estimated using MLE.

Three types of mixtures of the Generalized Gamma Distributions were tested. The first was a mixture of two half-normal distributions. The second was a mixture of gamma distributions. The third was mixture of Weibull distributions. Average distances and standard deviations for each of these cases tended to decrease with sample size, but this was not always the case, because there were some extreme outliers. For the most part, Minimum Distance did not improve parameter estimates. This is caused by the fact that the MLE estimates were much further from the true populations than in previous cases. The results are summarized in Table 19, 20 and 21, as well as in Figure 13, 14 and 15.

An attempt was made to improve the Maximum Likelihood estimate by restarting the Genetic Algorithm 15 times for the estimation of the GGD9(5, 0.5,1,2, 10,0.5,1,20.5,0.5,1,20.5) which is equivalent to 0.5 Weibull(2,0.5,5) + 0.5 Weibull(2,0.5,10) for sample sizes equal to ten. This was attempted so that the Maximum Likelihood estimate would not be affected by the initial population draws of the Genetic Algorithm. It did not improve the Maximum Likelihood Estimate.
<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE Better</th>
<th>MLE Ave Dist</th>
<th>MLE StDev Dist</th>
<th>MDE Ave Dist</th>
<th>MDE StDev Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD9(5,0.5,0.5,2, 10,0.5,0.5,2, 0.1)</td>
<td>5</td>
<td>36.5%</td>
<td>17.2074</td>
<td>235.0678</td>
<td>14.7188</td>
<td>173.3774</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>42.7%</td>
<td>160.2340</td>
<td>4065.4007</td>
<td>214.2402</td>
<td>6353.3455</td>
</tr>
<tr>
<td>0.1 Half-Normal(0.5,5) +</td>
<td>20</td>
<td>41.4%</td>
<td>24.1075</td>
<td>317.4191</td>
<td>5.4549</td>
<td>48.8895</td>
</tr>
<tr>
<td>0.9 Half-Normal(0.5,10)</td>
<td>50</td>
<td>35.4%</td>
<td>9.2536</td>
<td>55.6258</td>
<td>14.6415</td>
<td>342.8181</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>30.1%</td>
<td>35.3408</td>
<td>800.1484</td>
<td>4.1229</td>
<td>19.4784</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>28.8%</td>
<td>12.0450</td>
<td>103.1655</td>
<td>16.2656</td>
<td>412.0095</td>
</tr>
<tr>
<td>GGD9(5,0.5,0.5,2, 10,0.5,0.5,2, 0.3)</td>
<td>5</td>
<td>35.9%</td>
<td>172.1579</td>
<td>4902.1669</td>
<td>25.8920</td>
<td>699.5237</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>32.5%</td>
<td>57.4000</td>
<td>1101.733</td>
<td>29.9420</td>
<td>764.9027</td>
</tr>
<tr>
<td>0.3 Half-Normal(0.5,5) +</td>
<td>20</td>
<td>31.7%</td>
<td>33.1320</td>
<td>655.6209</td>
<td>8.2653</td>
<td>63.0886</td>
</tr>
<tr>
<td>0.7 Half-Normal(0.5,10)</td>
<td>50</td>
<td>30.1%</td>
<td>233.4613</td>
<td>4247.8926</td>
<td>8.9785</td>
<td>107.4095</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>30.1%</td>
<td>34.7074</td>
<td>744.7061</td>
<td>7.3780</td>
<td>68.8707</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>31.5%</td>
<td>97.7347</td>
<td>2680.0596</td>
<td>12.8910</td>
<td>132.3850</td>
</tr>
<tr>
<td>GGD9(5,0.5,0.5,2, 10,0.5,0.5,2, 0.5)</td>
<td>5</td>
<td>22.8%</td>
<td>16.5445</td>
<td>300.2714</td>
<td>2.2366</td>
<td>10.5080</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>25.0%</td>
<td>13.8057</td>
<td>122.0543</td>
<td>22.0262</td>
<td>438.7600</td>
</tr>
<tr>
<td>0.5 Half-Normal(0.5,5) +</td>
<td>20</td>
<td>29.0%</td>
<td>195.1772</td>
<td>5736.0197</td>
<td>8.9189</td>
<td>77.0940</td>
</tr>
<tr>
<td>0.5 Half-Normal(0.5,10)</td>
<td>50</td>
<td>31.0%</td>
<td>11.1105</td>
<td>60.9907</td>
<td>24.3062</td>
<td>353.2711</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>31.6%</td>
<td>21.0423</td>
<td>310.3885</td>
<td>44.9672</td>
<td>816.7931</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>32.8%</td>
<td>9.5300</td>
<td>90.2882</td>
<td>15.1278</td>
<td>157.5469</td>
</tr>
</tbody>
</table>

Fixed Parameters:

Mixed Generalized Gamma; none

Parameters fixed by MDE:

Mixed Weibull; M, C1
Table 20 Mixture of GGD9, Mix of Weibull Distributions Results, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE Better</th>
<th>MLE Ave Dist</th>
<th>MLE StDev Dist</th>
<th>MDE Ave Dist</th>
<th>MDE StDev Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGD9(5,0.5,1,2, 10,0.5,1,2, 0.1)</td>
<td>5</td>
<td>39.2%</td>
<td>325.4816</td>
<td>3041.3151</td>
<td>417.9064</td>
<td>7330.9237</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>36.1%</td>
<td>83.6890</td>
<td>709.4128</td>
<td>102.1803</td>
<td>2929.3164</td>
</tr>
<tr>
<td>0.1 Weibull(2,0.5,5) +</td>
<td>20</td>
<td>40.1%</td>
<td>2049.5534</td>
<td>55100.3625</td>
<td>10.8364</td>
<td>132.0712</td>
</tr>
<tr>
<td>0.9 Weibull(2,0.5,10)</td>
<td>50</td>
<td>46.5%</td>
<td>141.1049</td>
<td>2016.3228</td>
<td>5.7318</td>
<td>45.5691</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>51.6%</td>
<td>276.7355</td>
<td>7004.7223</td>
<td>9.3178</td>
<td>114.8154</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>56.2%</td>
<td>43.2844</td>
<td>452.0912</td>
<td>20.0893</td>
<td>371.8290</td>
</tr>
<tr>
<td>GGD9(5,0.5,1,2, 10,0.5,1,2, 0.3)</td>
<td>5</td>
<td>23.1%</td>
<td>48.1144</td>
<td>550.5923</td>
<td>14.5816</td>
<td>161.7734</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>26.9%</td>
<td>46.4158</td>
<td>693.9520</td>
<td>19.1025</td>
<td>330.2501</td>
</tr>
<tr>
<td>0.3 Weibull(2,0.5,5) +</td>
<td>20</td>
<td>35.3%</td>
<td>117.4913</td>
<td>2331.9271</td>
<td>15.9278</td>
<td>179.7710</td>
</tr>
<tr>
<td>0.7 Weibull(2,0.5,10)</td>
<td>50</td>
<td>43.4%</td>
<td>64.7897</td>
<td>1028.8367</td>
<td>53.1290</td>
<td>1188.0150</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>48.6%</td>
<td>379.4672</td>
<td>8239.3617</td>
<td>15.6233</td>
<td>114.6346</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>48.8%</td>
<td>90.4284</td>
<td>1598.1520</td>
<td>11.3831</td>
<td>65.2074</td>
</tr>
<tr>
<td>GGD9(5,0.5,1,2, 10,0.5,1,2, 0.5)</td>
<td>5</td>
<td>20.5%</td>
<td>76.9953</td>
<td>1566.1730</td>
<td>16.7244</td>
<td>134.9463</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>23.6%</td>
<td>54.1197</td>
<td>687.8037</td>
<td>124.5002</td>
<td>3058.3391</td>
</tr>
<tr>
<td>0.5 Weibull(2,0.5,5) +</td>
<td>20</td>
<td>32.3%</td>
<td>99.8584</td>
<td>2306.5141</td>
<td>16.9092</td>
<td>188.1700</td>
</tr>
<tr>
<td>0.5 Weibull(2,0.5,10)</td>
<td>50</td>
<td>38.8%</td>
<td>206.1879</td>
<td>5423.9182</td>
<td>318.4078</td>
<td>9035.1012</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>26.0%</td>
<td>76.6731</td>
<td>810.6282</td>
<td>56.9058</td>
<td>832.2582</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>42.7%</td>
<td>105.9541</td>
<td>1635.9082</td>
<td>28.3106</td>
<td>228.3784</td>
</tr>
</tbody>
</table>

Fixed Parameters:

Mixed Generalized Gamma; none

Parameters fixed by MDE:

Mixed Weibull; M, C1
Table 21 Mixture of GGD9, Mix of Gamma Distributions, Results, 1000 Replications

<table>
<thead>
<tr>
<th>Distribution</th>
<th>n</th>
<th>%MDE</th>
<th>MLE Ave</th>
<th>MLE StDev</th>
<th>MDE Ave</th>
<th>MDE StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Better</td>
<td>Dist</td>
<td></td>
<td>Dist</td>
</tr>
<tr>
<td>GGD9(5,0,5,2,1, 10,0,5,2,1, 0.1)</td>
<td>5</td>
<td>23.0%</td>
<td>3839.5630</td>
<td>14198.2036</td>
<td>30965.6477</td>
<td>107927.1025</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>29.8%</td>
<td>818.9738</td>
<td>3836.4657</td>
<td>22770.1562</td>
<td>97998.8013</td>
</tr>
<tr>
<td>0.1 Gamma(0.5,2,5) +</td>
<td>20</td>
<td>37.0%</td>
<td>253.6583</td>
<td>2941.2262</td>
<td>8244.0625</td>
<td>56846.6629</td>
</tr>
<tr>
<td>0.9 Gamma(0.5,2,10)</td>
<td>50</td>
<td>44.3%</td>
<td>1286.4060</td>
<td>38047.1286</td>
<td>105.9396</td>
<td>3042.7405</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>47.2%</td>
<td>90.1245</td>
<td>867.8399</td>
<td>17.8362</td>
<td>214.2934</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>47.1%</td>
<td>31.8820</td>
<td>312.7171</td>
<td>5.6627</td>
<td>48.8987</td>
</tr>
<tr>
<td>GGD9(5,0,5,2,1, 10,0,5,2,1, 0.3)</td>
<td>5</td>
<td>20.3%</td>
<td>426.5057</td>
<td>4244.6433</td>
<td>2943.3344</td>
<td>20946.5659</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>28.0%</td>
<td>115.0250</td>
<td>1014.4080</td>
<td>470.7710</td>
<td>6819.6270</td>
</tr>
<tr>
<td>0.3 Gamma(0.5,2,5) +</td>
<td>20</td>
<td>34.8%</td>
<td>169.4732</td>
<td>2068.7955</td>
<td>26.8496</td>
<td>277.0682</td>
</tr>
<tr>
<td>0.7 Gamma(0.5,2,10)</td>
<td>50</td>
<td>43.4%</td>
<td>134.8274</td>
<td>2012.9430</td>
<td>43.0410</td>
<td>532.2295</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>44.7%</td>
<td>143.5685</td>
<td>2194.8084</td>
<td>74.5137</td>
<td>1723.2606</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>46.7%</td>
<td>191.0620</td>
<td>3022.1309</td>
<td>12.5361</td>
<td>148.4399</td>
</tr>
<tr>
<td>GGD9(5,0,5,2,1, 10,0,5,2,1, 0.5)</td>
<td>5</td>
<td>16.7%</td>
<td>212.9728</td>
<td>4808.2843</td>
<td>868.0391</td>
<td>24436.3313</td>
</tr>
<tr>
<td>Equivalent to</td>
<td>10</td>
<td>26.3%</td>
<td>88.9492</td>
<td>1134.4886</td>
<td>63.3647</td>
<td>781.1593</td>
</tr>
<tr>
<td>0.5 Gamma(0.5,2,5) +</td>
<td>20</td>
<td>32.8%</td>
<td>29.7252</td>
<td>401.6574</td>
<td>13.9387</td>
<td>154.2059</td>
</tr>
<tr>
<td>0.5 Gamma(0.5,2,10)</td>
<td>50</td>
<td>35.6%</td>
<td>67.2405</td>
<td>647.6326</td>
<td>95.4062</td>
<td>1940.4139</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>41.1%</td>
<td>347.8163</td>
<td>5096.1299</td>
<td>75.5559</td>
<td>1043.2663</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>42.1%</td>
<td>166.4310</td>
<td>2298.5811</td>
<td>152.5097</td>
<td>3295.3148</td>
</tr>
</tbody>
</table>

Fixed Parameters:

Mixed Generalized Gamma; none

Parameters fixed by MDE:

Mixed Weibull; M, C1
Figure 13 Percent MDE Better, GGD9, Mixture of Half-Normal Distributions

Figure 14 Percent MDE Better, GGD9, Mixture of Weibull Distributions
Figure 15 Percent MDE Better, GGD9, Mixture of Gamma Distributions
V. Conclusions

5.1 MLE Conclusions

Maximizing the Maximum Likelihood Equation using a Genetic Algorithm worked well but gave poorer estimates as the number of parameters being estimated got larger, particularly when both location and mixture parameters were being estimated. For the most part, it behaved exactly as expected; as sample size grew, the average distance and standard deviation of the distance decreased. It tended to improve relative to Minimum Distance as sample size grew larger. It provided excellent estimators for the single component parameters. The use of the first derivative penalty function worked very well for the single component distributions. It, also, provided good estimators for the mixture of Exponential distributions with both known and unknown location parameters, and for the mixture of Non-separated Weibull distributions with known location parameters without the use of any first derivative penalty functions. MLE did not work as well for the mixture of Weibull distributions with unknown location parameters and did particularly poorly for the mixture of Generalized Gamma Distributions. The use of first derivative penalty functions for the mixture distributions did not help in this research, so it was abandoned, but with the proper scaling it might work. Mumford’s technique obtained lower MSE than this research. His use of the first derivative information for the Mixture of Weibull distributions with unknown location parameter gives evidence that it works. There must be a way to use that information as well for a Genetic Algorithm.

5.2 MDE Conclusions

Minimum Distance provided an improvement in many of the cases tested, particularly for small sample sizes. It improved the estimates of the Maximum Likelihood Estimator for the single component distributions, for the mixture of Exponential distributions with known parameters and for the mixture of non-separated Weibull distributions with known location parameters. It did not provide better estimates for the Mixture of Weibull distributions with unknown location parameters or for the Mixture of Generalized Gamma Distributions. These are the same distributions that the Maximum Likelihood Estimators did not
provide as good as estimates for. It is known that Minimum Distance is sensitive to the initial estimate that
it is provided. For the cases where it did not receive a good initial estimate, it performed poorly. It was
hoped to show that Minimum Distance would improve parameter estimation for the Mixed Generalized
Gamma Distribution. This was not shown because the Maximum Likelihood Estimates were so poor.

5.3 Recommendations

There are several avenues for continued research that this work has shown. First of all, the
possibility of using first derivative information for the parameter estimation of the Mixed Generalized
Gamma Distribution still exists. Given that the proper scaling can be discovered, much better MLE
parameters could be calculated and thereby also improve the initial estimate for Minimum Distance, which
would then improve its estimation capability, possibly to the point that it improves relative to Maximum
Likelihood Estimation.

Minimum Distance could be applied to other parameters not covered in this research. The large
distances seen when estimating the parameters for mixture of Generalized Gamma Distributions might be
reduced by using Minimum Distance on the power/shape parameters b1 and b2. These estimated
power/shape parameters were far from their true parameters, and were forcing the other parameters to
compensate for them. This had the unfortunate effect of driving the other estimated parameters far from
their true parameters.

Another problem that was encountered was that the second location parameter, c2, was being
pushed above the highest variates in the sample and the mixture parameter was nearing one. This means
that the estimation techniques were trying to fit the mixture with a single distribution. This research
penalized the objective if c2 was greater than the largest variate in the sample. Further research could
determine if a different upper limit for it would improve its distance from true such as the kth order statistic
vs. the nth order statistic where n > k > 1.

Another possibility for improving the efficiency of this Genetic Algorithm used is to improve the
stopping criteria. This research used a stopping criteria that perhaps was too simple. It simply checked
every 200th generation for MLE and every 150th for MDE and then stopped if the best individual did not
change in that amount of time. The number of generations run could possibly be reduced by a stopping
criteria based on percentage improvements in the best individual over successive generations. It could also
be reduced by storing the values of the 200 previous generations and checking the stopping criteria every
generation. This could greatly reduce the number of function evaluations that are required, which would
give significant reduction in simulation run times.

The results tables showed average distance and average standard deviation of distance. These
measures can be greatly affected by outliers. Other measures that are less sensitive to outliers, such as the
median of the distance should be considered. Study of outliers should be considered in any future research
that will use the distance as a measure of how much Minimum Distance improves the parameter estimates of
Maximum Likelihood.
Appendix A PDFs for Special Case Distributions

Key for Special Case Distributions taken from Law & Kelton, (location parameter added) (31:331-335):

Exponential: Expo(b,c)

\[f(x; b, c) = \frac{1}{b} \cdot e^{-\frac{(x-c)}{b}} \quad x > c > 0 \]

Expo(b) = Expo(b,0) = GGD4(0,b,1,1)

Gamma: Gamma(a,b,c)

\[f(x) = \frac{(x-c)^{a-1} \cdot e^{-\frac{(x-c)}{b}}}{\Gamma(a)} \quad x > c > 0 \]

Gamma(a,b) = Gamma(a,b,0) = GGD4(0,a,b,1)

Weibull: Weibull(a,b,c)

\[f(x) = \frac{a \cdot (x-c)^{a-1} \cdot e^{-\frac{(x-c)^a}{b}}}{b^a} \quad x > c > 0 \]

Weibull(a,b) = Weibull(a,b,0) = GGD4(0,b,1,1)

Generalized Gamma: GGD4(c,a,b,p)

\[f(x; c, a, b, p) = \frac{p \cdot (x-c)^{b-1} \cdot e^{-\frac{(x-c)^p}{a}}}{a^b \cdot \Gamma(b)} \]

where \(a, b, p \geq 0 \) and \(x > c \geq 0 \) (11:2).

GGD3(a,b,p) = GGD4(0,a,b,p)
Appendix B Source Code

Notes to the Code

1. Single quotes (') denote comments which are not executed.

2. All public, i.e. global or common, variables are designated with a "pv".

3. Subroutine calls have been documented as best possible to give the module that the called routine can be found in. If no module reference is given, the called subroutine will be in the same module as the calling subroutine.

4. The line continuation character "_" when used is found one space after the last text on a line. It similar to the "&" in card column 6 of FORTRAN. It continues the next line as part of the previous line.
Public & Settings Module

Option Explicit
'Contains variables and settings used throughout the program.

Public Const pvPopSize = 5 'Max number of individual in a generation.
Public Const pvSmallestParam = 0.0078125 'Smallest value a parameter can be
Public Const pvBiggestParam = 15.9921875 'Biggest value a parameter can be

Public pvNumMutation As Long 'Number of mutations that occur
Public pvNCross As Long 'Number of crossovers that occur

Public pvMDE As Boolean True if MDE, false if on mle
Public pvMaxVariates As Integer
Public pvCheck As Integer 'check to see Every pvCheck for convergence.
Public pvLChrom As Integer 'Length of a Chromosome
Public pvMaxLocParam As Single 'This is the biggest the LocParam can ever be.
Public pvC1 As Single 'This is the smaller location parameter
Public pvC2 As Single 'This is the bigger location parameter
Public pvM As Single 'This is the mixture parameter
Public pvBiggestVariate As Single 'This is the nth order statistic.

Type IndividualRecord
 Chrom(76) As Boolean ' Each position is an Allele: True=1,False=0
 C1 As Single
 A1 As Single
 B1 As Single
 P1 As Single
 C2 As Single
 A2 As Single
 B2 As Single
 P2 As Single
 M As Single
 Fitness As Double ' Objective function value
 Parent1 As Integer ' parents
 Parent2 As Integer
 Xsite As Integer 'cross point
End Type

Type Population
 Individual(pvPopSize) As IndividualRecord
End Type
This initializes the settings for Maximum Likelihood Estimation

Sub SetupForMLE()
 pvMDE = False
 pvLChrom = 76
 pvCheck = 200
End Sub

This initializes the settings for Minimum Distance Estimation

Sub SetupForMDE()
 pvMDE = True
 pvLChrom = 60
 pvCheck = 150
End Sub
Driver Module

Option Explicit
' Contains the Driver Routine.

' Runs the GA for different sample sizes and writes them
to separate worksheets.
Sub Driver()
 pvMaxVariates = 50
 Call RunGA
 Sheets("Output").Copy Before:=Sheets(1)
 Sheets("Output").Range("a:iv").ClearContents
 pvMaxVariates = 5
 Call RunGA
 Sheets("Output").Copy Before:=Sheets(1)
 Sheets("Output").Range("a:iv").ClearContents
 pvMaxVariates = 20
 Call RunGA
 Sheets("Output").Copy Before:=Sheets(1)
 Sheets("Output").Range("a:iv").ClearContents
 pvMaxVariates = 50
 Call RunGA
 Sheets("Output").Copy Before:=Sheets(1)
 Sheets("Output").Range("a:iv").ClearContents
 pvMaxVariates = 75
 Call RunGA
 Sheets("Output").Copy Before:=Sheets(1)
 Sheets("Output").Range("a:iv").ClearContents
 pvMaxVariates = 100
 Call RunGA
End Sub
'This runs the MicroGA 1000 times and saves it periodically.

Sub RunGA()
 Dim Distrib As String
 Dim i As Integer
 Dim UppLim As Single

 On Error GoTo handleCancel
 Application.EnableCancelKey = xlErrorHandler
 Application.DisplayAlerts = False

 Sheets("Output").Select

 Const TCI = 5 'True Parameters
 Const TA1 = 2
 Const TB1 = 2
 Const TP1 = 1
 Const TC2 = 10
 Const TA2 = 2
 Const TB2 = 2
 Const TP2 = 1
 Const TM = 0.5

 Distrib = "GGD9(& TCI & "," & TA1 & "," & TB1 & "," & TP1 & "," & _
 TC2 & "," & TA2 & "," & TB2 & "," & TP2 & "," & TM & ") n=" & pvMaxVariates

 Range("A1").NoteText Text:='Distrib, Start:1
 Range("A1").Value = Distrib
 Range("A1").Select

 UppLim = FindUppLim(TCI, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, TC2) 'in Integrated Dist Mod

 For i = 1 To 1000
 Call MicroGA(TCI, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, UppLim)
 If (i Mod 48) = 0 Then
 ActiveWorkbook.Save
 End If
 Next i

handleCancel:

 Sheets("Driver Mod").Select
 ActiveWorkbook.Save

 MsgBox "Data Saved. Select 'Driver' macro to Continue.", vbExclamation, "Dean's Thesis"
End Sub
' ClearOutputSheet Macro
' Macro recorded 2/14/98 by Dean Boerrigter
' Removes all data from output sheet and formats it.

Sub ClearOutputSheet()
 Sheets("Output").Select
 Sheets("Output").Range("a:iv").ClearContents

 Columns("A:A").ColumnWidth = 3.57
 Columns("A:A").ColumnWidth = 4
 Columns("B:B").ColumnWidth = 5.86
 Columns("C:C").ColumnWidth = 35.57
 Columns("D:D").ColumnWidth = 38.43
 Columns("E:E").ColumnWidth = 11.29
 Columns("F:F").ColumnWidth = 11.29
 ActiveWindow.Zoom = 75

 Range("B2").Select
 ActiveWindow.FreezePanes = True
End Sub
Gen Gamma Module

Option Explicit
'Contains the Mixed Generalized Gamma Functions.

' Cumulative density function for the 9-parameter Generalized Gamma
'Distribution
Function GGD9cdf(X As Single, C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single,
A2 As Single, B2 As Single, P2 As Single, M As Single) As Double
 Dim cdf1 As Single
 Dim cdf2 As Single
 cdf1 = M * GGD4cdf(X, C1, A1, B1, P1)
 cdf2 = 0
 If X > C2 Then
 cdf2 = (1 - M) * GGD4cdf(X, C2, A2, B2, P2)
 End If
 GGD9cdf = cdf1 + cdf2
End Function

' Probability density function for the 9-parameter Generalized Gamma
'Distribution
Function GGD9pdf(X As Single, C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single,
A2 As Single, B2 As Single, P2 As Single, M As Single) As Single
 Dim pdf1 As Single
 Dim pdf2 As Single
 pdf1 = M * Exp(lnGGD4pdf(X, C1, A1, B1, P1))
 If X > C2 Then
 pdf2 = (1 - M) * Exp(lnGGD4pdf(X, C2, A2, B2, P2))
 Else
 pdf2 = 0
 End If
 GGD9pdf = pdf1 + pdf2
End Function
'This function returns the value of the
4-parameter Generalized Gamma function Cumulative Distribution Function
Function GGD4cdf(X As Single, c As Single, a As Single, b As Single, p As Single) As Single

Dim IncompleteGamma As Single
Dim UpperLimit As Double

UpperLimit = ((X - c) / a) ^ p
If UpperLimit > 1000000000000# Then
 GGD4cdf = 0.999999
 Exit Function
End If

IncompleteGamma = GaussLegendreQuadrature(0, UpperLimit, 10, b)
GGD4cdf = IncompleteGamma / Exp(lnGamma(b))
End Function

'The natural log of the probability density function for the 4-parameter
Generalized Gamma Distribution
'The "on error" is needed to integrate
Function lnGGD4pdf(X As Single, c As Single, a As Single, b As Single, p As Single) As Single

Dim d As Single

d = b * p
On Error GoTo err:
 lnGGD4pdf = Log(p) + (d - 1) * Log(X - c) - ((X - c) / a) ^ p - d * Log(a) - d * lnGamma(b)
 Exit Function
err:
 lnGGD4pdf = -200
End Function

'This is the function to be integrated.
' Set up for incomplete Gamma.
Function f(t As Double, b As Single) As Double
 If t <> 0 Then
 f = Exp(-t) * t ^ (b - 1)
 Else
 f = 0
 End If
End Function
Function GaussLegendreQuadrature(xFirst As Single, xLast As Double, nSubIntervals As Integer, b1 As Single) As Single

Dim xA As Single, xB As Single
Dim h As Single, hDiv2 As Single
Dim Sum As Double, area As Double, xJ As Double
Static Xk(5) As Single
Static Ak(5) As Single
Dim n As Integer, i As Integer, j As Integer

Xk(0) = -0.9324695142
Xk(1) = -0.6612093865
Xk(2) = -0.2386191861
Xk(3) = 0.2386191861
Xk(4) = 0.6612093865
Xk(5) = 0.9324695142
Ak(0) = 0.1713244924
Ak(1) = 0.360761573
Ak(2) = 0.4679139346
Ak(3) = 0.4679139346
Ak(4) = 0.360761573
Ak(5) = 0.1713244924
area = 0
n = nSubIntervals

h = (xLast - xFirst) / n
xA = xFirst
For i = 1 To n
 Sum = 0
 xB = xA + h
 hDiv2 = h / 2
 ' obtain area of sub-interval
 For j = 0 To 5
 xJ = xA + hDiv2 * (Xk(j) + 1)
 Sum = Sum + Ak(j) * f(xJ, b1)
 Next j
 area = area + hDiv2 * Sum
 xA = xB
Next i

GaussLegendreQuadrature = area
End Function
' lnGamma function
' It returns the value of the LN(Gamma(XX)) for XX>0
' Full accuracy is obtained for XX>1
'
' Numerical Recipes 11/15/92
Function lnGamma(xx As Single) As Single

Dim i As Integer
Dim cof(6) As Single
Dim stp As Single
Dim X As Single
Dim tmp As Single
Dim ser As Single

cof(1) = 76.18009173
cof(2) = -86.50532033
cof(3) = 24.01409822
cof(4) = -1.231739516
cof(5) = 0.00120858003
cof(6) = -0.00000536382

stp = 2.5066282746

X = xx - 1#
tmp = X + 5.5
tmp = (X + 0.5) * Log(tmp) - tmp

ser = 1#

For i = 1 To 6
 X = X + 1#
 ser = ser + cof(i) / X
Next i

lnGamma = tmp + Log(stp * ser)
End Function
ALGORITHM AS 103 APPL. STATIST. (1976) VOL.25, NO.3

Calculates DIGAMMA(X) = D(LOG(GAMMA(X))) / DX
Also known as the Psi function

Function DiGamma(X As Single) As Single

Dim S As Single
Dim c As Single
Dim S3 As Single
Dim S4 As Single
Dim S5 As Single
Dim d1 As Single
Dim Y As Single
Dim R As Single

Set constants, SN = Nth Stirling coefficient, D1 = DIGAMMA(1.0)

Const ZERO = 0#
Const HALF = 0.5
Const ONE = 1#

S = 0.00001
C = 8.5
S3 = 0.08333333333
S4 = 0.0083333333333
S5 = 0.003968253968
D1 = -0.5772156649

' Check argument is positive
DiGamma = ZERO
Y = X

' Use approximation if argument <= S
If (Y <= S) Then
 DiGamma = D1 - ONE / Y
 Return
End If

' Reduce to DiGamma(X + N) where (X + N) >= C
line1:
If (Y >= c) Then GoTo line2:
 DiGamma = DiGamma - ONE / Y
 Y = Y + ONE
GoTo line1:

74
' Use Stirling's (actually de Moivre's) expansion if argument > C

line2:
 R = ONE / Y
 DiGamma = DiGamma + Log(Y) - HALF * R
 R = R * R
 DiGamma = DiGamma - R * (S3 - R * (S4 - R * S5))

End Function
MicroGA Module

Option Explicit
' Contains the Micro Genetic Algorithm Driver.

This driver executes the Micro-GA algorithm and calculates an
MLE & MDE estimate.

Sub MicroGA(TC1 As Single, TA1 As Single, TB1 As Single, TP1 As Single, TC2 As Single, TA2 As
Single, TB2 As Single, TP2 As Single, TM As Single, TrueParmUppLim As Single)

 Dim OldPop As Population ' Two non-overlapping populations
 Dim NewPop As Population
 Dim BestIndividual As IndividualRecord

 Dim n As Integer ' Number of variates
 Dim i As Integer ' 1=MLE, 2=MDE
 Dim Gen As Integer

 Dim SumFitness As Double
 Dim Avg As Double
 Dim Max As Double
 Dim Min As Double

 Dim CheckFitness As Double
 Dim X(500) As Single ' Variates array
 Dim StartTime As Date

 Sheets("output").Select
 Call HeaderBest
 n = pvMaxVariates

 Call GenerateRV(TC1, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, X, n) ' in RNG Mod
 Call SetupForMLE

 For i = 1 To 2

 StartTime = Time
 Gen = 0
 CheckFitness = -1.79769313486232E+302 ' A very negative number

 Call Initialize(OldPop, X, n, SumFitness, Max, Avg, Min, BestIndividual) ' in Init mod

 Do

 Loop

 Next i

End Sub
Gen = Gen + 1

Call Generation(OldPop, NewPop, SumFitness, X, n, BestIndividual) 'in generation mod
Call Statistics(NewPop, SumFitness, Max, Avg, Min, BestIndividual, False) ' in stat mod

'Call Report(Gen, OldPop, NewPop, Max, Min, Avg, SumFitness)

OldPop = NewPop ' advance the generation

If MicroGAConvergence(OldPop, BestIndividual) Then ' in ops mod
 Call InitPop(OldPop, X, n, False, BestIndividual) ' in init mod
End If

If (Gen Mod pvCheck) = 0 Then
 If CheckFitness = BestIndividual.Fitness Then
 Exit Do
 Else
 CheckFitness = BestIndividual.Fitness
 End If
End If

Loop

Call ProcessBestIndividual(BestIndividual, X, n, Gen, StartTime, _
 TC1, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, TrueParmUppLim)

Next i

End Sub
This prints out the best individual, and sets up variables for
Minimum Distance and performs min dist and distance from true
Sub ProcessBestIndividual(BestIndividual As IndividualRecord, X() As Single, n As Integer, Gen As Integer, StartTime As Date, _
TC1 As Single, TA1 As Single, TB1 As Single, TP1 As Single, _
TC2 As Single, TA2 As Single, TB2 As Single, TP2 As Single, _
TM As Single, TrueParmUppLim As Single)

Dim Distance As Single
Dim UpperLimit As Single
Dim NewM As Single
Dim NewC1 As Single
Dim NewC2 As Single

With BestIndividual
 UpperLimit = FindUppLim(TC1, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM, TrueParmUppLim) 'in int dist mod

 'Integrate from lower limit c1 to UpperLimit

 Call PrintBest(BestIndividual, n, Gen, StartTime, Distance)

 If Not pvMDE Then
 Call SetupForMDE
 Call RSort(X(), n)
 NewM = MinDistM(BestIndividual, X, n) 'Found in MinDistM Mod
 NewC1 = MinDistCl(BestIndividual, X, n) 'Found in MinDistCl Mod

 .M = NewM
 .pvM = NewM

 .C1 = NewC1
 pvC1 = NewC1
 End If
End With
End Sub
' Prints the best individual and all necessary statistic
' on the next line on the activesheet.
Sub PrintBest(Best As IndividualRecord, n As Integer, Gen As Integer, StartTime As Date, Dist As Single)
 Dim RowOut As Integer, Off As Integer
 Dim Better As String

 With Best
 If pvMDE Then
 RowOut = Range("a1").CurrentRegion.Rows.Count
 Off = 1
 Else
 RowOut = Range("a1").CurrentRegion.Rows.Count + 1
 Off = 0
 End If

 Cells(RowOut, 1) = RowOut - 1
 Cells(RowOut, 5 + Off) = Dist
 Cells(RowOut, 7 + Off) = .Fitness
 Cells(RowOut, 9 + Off) = Format(StartTime - Time, ",ss")
 Cells(RowOut, 11 + Off) = Gen

 If pvMDE Then
 If Dist < Cells(RowOut, 5).Value Then
 Better = "MDE"
 Else
 Better = "MLE"
 End If
 End If

 Cells(RowOut, 2) = Better
 End With
End Sub
' Header for the Best individual report

Sub HeaderBest()

 Range("B1") = "Better"
 Range("C1") = "MLE Param"
 Range("D1") = "MDE Param"
 Range("E1") = "MLE Dist"
 Range("F1") = "MDE Dist"
 Range("G1") = "MLE Fit"
 Range("H1") = "MDE Fit"
 Range("I1") = "MLE Time"
 Range("J1") = "MDE Time"
 Range("K1") = "MLE Gen"
 Range("L1") = "MDE Gen"

End Sub
Option Explicit
' Contains the Objective Function and Decode routines for the GA.

" This is the Fitness function
' It calculates the Sum of the logs of GGD9
' and penalizes for probilities = 0 and c2 > greatest variate.
Function ObjFunc(C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single, A2 As Single,
 B2 As Single, P2 As Single, M As Single, X() As Single, n As Integer) As Double

 Dim i As Integer
 Dim lnGGD4c1 As Double 'log of GGD4 Component1 pdf
 Dim lnGGD4c2 As Double 'log of GGD4 Component2 pdf
 Dim lnGGD9 As Double 'log of GGD9 pdf
 Dim GGD9 As Double
 Dim Const1 As Single 'constant portion of GGD4 component1
 Dim Const2 As Single 'constant portion of GGD4 component2
 Dim D1minus1 As Single
 Dim D2minus1 As Single

 lnGGD9 = 0
 Const1 = Log(P1) - B1 * P1 * Log(A1) - lnGamma(B1)
 Const2 = Log(P2) - B2 * P2 * Log(A2) - lnGamma(B2)

 D1minus1 = B1 * P1 - 1
 D2minus1 = B2 * P2 - 1

 For i = 1 To n
 If X(i) > C2 Then
 lnGGD4c2 = Const2 + D2minus1 * Log(X(i) - C2) - ((X(i) - C2) / A2)^P2
 End If

 lnGGD4c1 = Const1 + D1minus1 * Log(X(i) - C1) - ((X(i) - C1) / A1)^P1

 GGD9 = M * Exp(lnGGD4c1) + (1 - M) * Exp(lnGGD4c2)

 If GGD9 > 0 Then
 lnGGD9 = lnGGD9 + Log(GGD9)
 Else
 lnGGD9 = lnGGD9 - 50 'Penalty
 End If
 Next i

 If C2 >= pvBiggestVariate Then lnGGD9 = lnGGD9 - 200

 ObjFunc = lnGGD9
End Function
' Decode string as unsigned binary integer - true=1, false=0
' C2 always > c1.
Sub Decode(Chrom() As Boolean, C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single,
A2 As Single, B2 As Single, P2 As Single, M As Single)
 Dim i As Integer
 Dim C2Tot As Single
 Dim A1Tot As Single
 Dim A2Tot As Single
 Dim B1Tot As Single
 Dim B2Tot As Single
 Dim P1Tot As Single
 Dim P2Tot As Single
 Dim MTot As Single
 Dim PowerOf2 As Single

 C2Tot = pvSmallestParam 'to avoid zero's
 A1Tot = pvSmallestParam
 A2Tot = pvSmallestParam
 B1Tot = pvSmallestParam
 B2Tot = pvSmallestParam
 P1Tot = pvSmallestParam
 P2Tot = pvSmallestParam
 MTot = pvSmallestParam

 PowerOf2 = pvSmallestParam
 For i = 1 To 10
 PowerOf2 = PowerOf2 * 2
 If Chrom(i) Then A1Tot = A1Tot + PowerOf2
 If Chrom(i + 10) Then A2Tot = A2Tot + PowerOf2
 If Chrom(i + 20) Then B1Tot = B1Tot + PowerOf2
 If Chrom(i + 30) Then P1Tot = P1Tot + PowerOf2
 If Chrom(i + 40) Then B2Tot = B2Tot + PowerOf2
 If Chrom(i + 50) Then C2Tot = C2Tot + PowerOf2
 If Chrom(i + 60) Then C2Tot = C2Tot + PowerOf2
 Next i
 If Not pvMDE Then
 PowerOf2 = pvSmallestParam
 For i = 1 To 10
 PowerOf2 = PowerOf2 * 2
 If Chrom(i + 60) Then C2Tot = C2Tot + PowerOf2
 Next i
 PowerOf2 = pvSmallestParam
 For i = 1 To 6
 PowerOf2 = PowerOf2 * 2
 If Chrom(i + 70) Then MTot = MTot + PowerOf2
 Next i
Next i

 M = MTot
 C2 = C2Tot + pvC1
Else
 M = pvM
 C2 = pvC2
End If

 C1 = pvC1
 A1 = A1Tot
 B1 = B1Tot
 P1 = P1Tot

 A2 = A2Tot
 B2 = B2Tot
 P2 = P2Tot
End Sub
'Calculates the summations needed for the log likelihood function
Sub LikelihoodSums(C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single, A2 As Single, B2 As Single, P2 As Single, M As Single, _
X() As Single, n As Integer, SumLNu As Single, SumUtoP As Single, SumUtoPlnU As Single)
Dim i As Integer
Dim U As Double
Dim UtoP As Double
Dim InU As Double
SumUtoP = 0
SumLNu = 0
For i = 1 To n
U = X(i) - C1
UtoP = U ^ P1
InU = Log(U)

 SumUtoP = SumUtoP + UtoP
 SumLNu = SumLNu + InU
 SumUtoPlnU = SumUtoPlnU + UtoP * InU
Next i
End Sub

' 3rd Equation of Parr & Webster
' A method for Discriminating Between Failure Density Functions Used
' in Reliability Predictions
' Technometrics Vol 7, No 1, pg 1-10 (Feb 1963)
' Used to find 0 of GGD4
Function Parr3(n As Integer, p As Single, b As Single, SumLNu As Single, SumUtoP As Single) As Double
Dim d As Double
 d = b * p
Parr3 = Log(p) - Log(n) - Log(d) + Log(SumUtoP) + DiGamma(d / p) - (p / n) * SumLNu
End Function
' 4rd Equation of Parr & Webster
' A method for Discriminating Between Failure Density Functions Used
' in Reliability Predictions
' Technometrics Vol 7, No 1, pg 1-10 (Feb 1963)
' Used to find 0 of GGD4
Function Parr4(n As Integer, p As Single, b As Single, SumUtoP As Single, SumUtoPlnU As Single) As Double
 Dim d As Double
 d = b * p
 Parr4 = Log(p) - Log(n) - Log(d) + Log(SumUtoP) + DiGamma(d / p) + (p / d) - (p / SumUtoP) * SumUtoPlnU
End Function
Generation Module

Option Explicit
' Contains the GA routines that create a new generation.

' Create a new generation through select, crossover, and mutation
Sub Generation(OldPop As Population, NewPop As Population, SumFitness As Double, X() As Single, n As Integer, BestInd As IndividualRecord)
 Dim Cnt As Integer
 Dim j As Integer
 Dim Mate1 As Integer
 Dim Mate2 As Integer
 Dim NextMate As Integer
 Dim jCross As Integer

 NextMate = pvPopSize
 For j = 1 To 3 Step 2 ' select, crossover, and mutation loop until newpop is filled
 Call SelectMate(Mate1, NextMate, OldPop)
 Call SelectMate(Mate2, NextMate, OldPop)
 ' Crossover
 Call CrossOver(OldPop.Individual(Mate1).Chrom, OldPop.Individual(Mate2).Chrom, _
 pvLChrom, jCross)
 ' Decode string, evaluate fitness, & record parentage date on both children
 With NewPop.Individual(j)
 .Parent1 = Mate1
 .Parent2 = Mate2
 .Xsite = jCross
 End With

 With NewPop.Individual(j + 1)
 .Parent1 = Mate1
 .Parent2 = Mate2
 .Xsite = jCross
 End With
 Next j
NewPop.Individual(pvPopSize) = BestInd
End Sub
Operations Module

Option Explicit
' Contains the GA operators

' 3-operators: Reproduction (selectMate), Crossover (crossover),
' & Mutation (mutation)

' Selects a mate and then advances the MatePointer
' Randomly sorts the population and resets the MatePointer
' as needed.
Sub SelectMate(Mate As Integer, MatePointer As Integer, OldPop As Population)
 If MatePointer >= pvPopSize Then
 Call RandomSortPopulation(OldPop)
 MatePointer = 1
 End If

 If OldPop.Individual(MatePointer).Fitness > OldPop.Individual(MatePointer + 1).Fitness Then
 Mate = MatePointer
 Else
 Mate = MatePointer + 1
 End If

 MatePointer = MatePointer + 2
End Sub

' Select a single individual via roulette wheel selection
Function SelectInd(Pop As Population, SumFitness As Double) As Integer
 Dim Rand As Double
 Dim PartSum As Double ' Random point on wheel, partial sum
 Dim j As Integer ' population index

 PartSum = 0# ' Random out counter and accumulator
 Rand = rnd * SumFitness ' Wheel point calc. uses random number (0,1)
 Do ' Find wheel slot
 j = j + 1
 PartSum = PartSum + Pop.Individual(j).Fitness
 Loop Until (PartSum >= Rand) Or (j = pvPopSize)

 SelectInd = j ' Return individual number
End Function
Sub CrossOver(Parent1, Parent2, child1, child2, pvLChrom, jCross As Integer)
 Dim i As Integer
 Dim j As Integer

 jCross = RandomInteger(1, pvLChrom - 1) ' Cross between 1 and l-1
 pvNCross = pvNCross + 1 ' Increment crossover counter

 ' 1st exchange, 1 to 1 and 2 to 2
 For i = 1 To pvLChrom
 child1(i) = Parent1(i)
 child2(i) = Parent2(i)
 Next i

 ' 2nd exchange, 1 to 2 and 2 to 1
 For j = jCross + 1 To pvLChrom
 child1(j) = Parent2(j)
 child2(j) = Parent1(j)
 Next j
End Sub

Function MicroGAConvergance(OldPop As Population, BestInd As IndividualRecord) As Boolean
 Dim i As Integer
 Dim j As Integer
 Dim Count As Integer

 Count = 0
 For i = 1 To pvPopSize
 For j = 1 To pvLChrom
 If Not BestInd.Chrom(j) = OldPop.Individual(i).Chrom(j) Then
 Count = Count + 1
 End If
 Next j
 Next i

 If Count < 0.05 * (pvPopSize - 1) * pvLChrom Then
 MicroGAConvergance = True
 Else
 MicroGAConvergance = False
 End If
End Function
' Sorts the population into a random order
'
Sub RandomSortPopulation(Pop As Population)
 Dim i As Integer
 Dim SwapTo As Integer
 Dim Hold As IndividualRecord

 For i = 1 To PopSize
 Hold = Pop.Individual(i)

 SwapTo = RandomInteger(1, PopSize) 'Found in Rand mod

 Pop.Individual(i) = Pop.Individual(SwapTo)
 Pop.Individual(SwapTo) = Hold
 Next i
End Sub
Rand Module

Option Explicit
' Contains the random number operators needed for the GA.

' Flip a biased coin - true if heads
Function Flip(probability As Double) As Boolean
 Flip = (rnd <= probability)
End Function

' Pick a random integer between low and high
Function RandomInteger(Low As Integer, High As Integer) As Integer
 Dim i As Integer
 If Low >= High Then
 i = Low
 Else
 i = Fix(rnd * (High - Low + 1) + Low) 'return an integer
 If i > High Then i = High
 End If

 RandomInteger = i
End Function
Option Explicit
'Contains the initialization routines for the GA

Sub Initialize(OldPop As Population, X() As Single, n As Integer, SumFitness As Double, Max1 As Double, Avg1 As Double, Min1 As Double, BestInd As IndividualRecord)
 Randomize
 Call InitPop(OldPop, X, n, True, BestInd)
 Call Statistics(OldPop, SumFitness, Max1, Avg1, Min1, BestInd, True)
End Sub

Sub InitPop(Pop As Population, X() As Single, n As Integer, Initial As Boolean, BestInd As IndividualRecord)
 Dim i As Integer
 Dim j As Integer
 Dim NumNew As Integer

 If Initial And Not pvMDE Then
 NumNew = pvPopSize
 Call VariateStatistics(X, n)
 pvCl = pvMaxLocParam
 Else
 NumNew = pvPopSize - 1
 Pop.Individual(pvPopSize) = BestInd
 End If

 For i = 1 To NumNew
 With Pop.Individual(i)
 For j = 1 To pvLChrom
 .Chrom(j) = Flip(0.5) ' A fair coin toss
 Next j
 .Parent1 = 0
 .Parent2 = 0
 .Xsite = 0
 End With
 Next i
End Sub
'This finds the Smallest Variate and then sets the
'c1 location parameter based on its value.
'and the biggest variate.
Sub VariateStatistics(X() As Single, n As Integer)

Dim i As Integer

Dim SmallestX As Single
Dim BiggestX As Single

SmallestX = 3.402823E+38 'Largest Value stored in single precision
BiggestX = -3E+38

For i = 1 To n
 If X(i) < SmallestX Then
 SmallestX = X(i)
 End If
 If X(i) > BiggestX Then
 BiggestX = X(i)
 End If
Next i

If SmallestX - pvSmallestParam < 0 Then
 pvMaxLocParam = 0
Else
 pvMaxLocParam = SmallestX - pvSmallestParam
End If

pvBiggestVariate = BiggestX

End Sub

' Not currently used.
' Interactive data inquiry and setup
Sub InitData()

 Call Output("-----------------------------")
 Call Output("A Simple Genetic Algorithm - SGA")
 Call Output((c) David Edward Goldberg 1986")
 Call Output(" All Rights Reserved")
 Call Output("-----------------------------")

 Call Output("******** SGA Data Entry and Initialization ********")
 Call Output
 Call Output("population size ---- > " & pvPopSize)
 Call Output("chromosome length ---- > " & pvLChrom)
 Call Output(" Check every X generations (pvCheck) = " & pvCheck)

End Sub

93
Not currently Used

' Initial report
Sub InitReport(SumFitness, Max, Avg, Min)

Call Output("-----------------------------------")
Call Output(" A Simple Genetic Algorithm - SGA - v1.0")
Call Output(" (c) David Edward Goldberg 1986")
Call Output(" All Rights Reserved")
Call Output("-----------------------------------")

Call Output(" SGA Parameters")
Call Output(" ------------")

Call Output(" Population size (pvPopSize) = " & pvPopSize)
Call Output(" Chromosome length (pvLChrom) = " & pvLChrom)
Call Output(" Check every X generations (pvCheck) = " & pvCheck)

Call Output(" Initial Generation Statistics")
Call Output(" ----------------------")

Call Output(" Initial population maximum fitness = " & Max)
Call Output(" Initial population average fitness = " & Avg)
Call Output(" Initial population minimum fitness = " & Min)
Call Output(" Initial population sum of fitness = " & SumFitness)

End Sub
Report Module

Option Explicit
' Contains the test report for the Ga.
' Only used for testing.

' This prints out all the individuals for the population
' Sub Report(Gen As Integer, OldPop As Population, NewPop As Population, Max, Min, Avg, Sum)

Dim i As Integer
Dim RowOut As Integer
Dim ChromoString As String

Worksheets("output").Select
RowOut = Range("a1").CurrentRegion.Rows.Count + 1

Cells(RowOut, 1) = "Generations" & Gen - 1 & "," & Gen

For i = 1 To pvPopSize
 RowOut = Range("a1").CurrentRegion.Rows.Count + 1
 Cells(RowOut, 1) = i
 With OldPop.Individual(i)
 Call ChromToString(ChromoString, .Chrom)
 Cells(RowOut, 2) = ChromoString
 Cells(RowOut, 4) = .Fitness
 End With
 With NewPop.Individual(i)
 Cells(RowOut, 5) = .Parent1 & "," & .Parent2
 Cells(RowOut, 6) = .Xsite
 Call ChromToString(ChromoString, .Chrom)
 Cells(RowOut, 7) = ChromoString
 Cells(RowOut, 9) = .Fitness
 End With
Next i

RowOut = Range("a1").CurrentRegion.Rows.Count + 1
Cells(RowOut, 1) = "Max"
Cells(RowOut, 2) = "Min"
Cells(RowOut, 3) = "average"
Cells(RowOut, 4) = "SumFitness"
Cells(RowOut, 5) = "Mutates"
Cells(RowOut, 6) = "Cross"

Cells(RowOut + 1, 1) = Max
Cells(RowOut + 1, 2) = Min
Cells(RowOut + 1, 3) = Avg
Cells(RowOut + 1, 4) = Sum
Cells(RowOut + 1, 5) = pvNumMutation
Cells(RowOut + 1, 6) = pvNCross

Cells(RowOut + 2, 1) = String(Number:=-100, Character:="*")

End Sub

' Header Macro
'Macro recorded 11/14/97 by Dean Boerrigter
Sub Header()
 Range("A1").FormulaR1C1 = "#"
 Range("B1").FormulaR1C1 = "String"
 Range("C1").FormulaR1C1 = "X"
 Range("D1").FormulaR1C1 = "Fitness"
 Range("E1").FormulaR1C1 = "Parents"
 Range("F1").FormulaR1C1 = "Xsite"
 Range("G1").FormulaR1C1 = "String"
 Range("H1").FormulaR1C1 = "X"
 Range("I1").FormulaR1C1 = "Fitness"

 Range("A2").Select
 ActiveWindow.FreezePanes = True
End Sub

' this write the String to the Output worksheet on the
' next empty line
Sub Output(Optional StringOut)
 Dim RowOut As Integer

 With Sheets("output")
 RowOut = .Range("A1").CurrentRegion.Rows.Count + 1
 .Cells(RowOut, 1) = StringOut
 End With
End Sub

' write a chromosome as a string of 1's (true's) and 0's (false's)
Sub ChromToString(TextOut As String, Chrom)
 Dim j As Integer
 TextOut = ""
 For j = pvLChrom To 1 Step -1
 If Chrom(j) Then
 TextOut = TextOut + "1"
 Else
 TextOut = TextOut + "0"
 End If
 Next j
End Sub

96
Option Explicit
' Calculates the statistics for the GA.

' Calculate population statistics
Sub Statistics(Pop As Population, SumFitness As Double, Maximum As Double, Avg1 As Double, Minimum As Double, TopIndividual As IndividualRecord, Initialize As Boolean)

 Dim j As Integer

 If Initialize Then
 Minimum = Pop.Individual(1).Fitness
 Maximum = Pop.Individual(1).Fitness
 TopIndividual.Fitness = -1.79769313486232E+302
 End If

 SumFitness = 0
 For j = 1 To pvPopSize
 With Pop.Individual(j)
 SumFitness = SumFitness + .Fitness ' Accumulate fitness sum
 If .Fitness >= Maximum Then Maximum = .Fitness ' New Current Maximum
 If .Fitness >= TopIndividual.Fitness Then
 TopIndividual = Pop.Individual(j) ' Save Best Individual
 End If
 If .Fitness < Minimum Then Minimum = .Fitness ' New Current Minimum
 End With
 Next j

 Avg1 = SumFitness / pvPopSize
End Sub
MinDistM Module

Option Explicit
'Contains the Minimum Distance Routines for the mixture parameter, m.

' finds the Minimum Distance for the mixture parameter
Function MinDistM(BestInd As IndividualRecord, X() As Single, n As Integer) As Single
With BestInd
 Call RSort(X(), n) 'Found in Sort Mod
End With
End Function

' Finds the minimum value within an interval.
' Mathematical Algorithms in VB for Scientist & Engineers
' Shammas, Nammar, 1996. pg 115-116
Function GoldenSearchMinM(xA As Double, xB As Double, tolerance As Double, Variates() As Single, n As Integer, C1 As Single, A1 As Single, B1 As Single, P1 As Single, _
 C2 As Single, A2 As Single, B2 As Single, P2 As Single) As Single
 Const MaxIter = 1000
 Dim Xc As Single, Xd As Single
 Dim Fc As Single, Fd As Single
 Dim oneMinusTau As Single
 iter = 0
 oneMinusTau = 1 - (Sqr(5) - 1) / 2
 Xc = xA + oneMinusTau * (xB - xA)
 Fc = CalcAD(Variates, n, C1, A1, B1, P1, C2, A2, B2, P2, Xc)
 Xd = xB - oneMinusTau * (xB - xA)
 Fd = CalcAD(Variates, n, C1, A1, B1, P1, C2, A2, B2, P2, Xd)
 Do
 iter = iter + 1
 If Fc < Fd Then
 xB = Xd
 Xd = Xc
 Xc = xA + oneMinusTau * (xB - xA)
 Fd = Fc
 Fc = CalcAD(Variates, n, C1, A1, B1, P1, C2, A2, B2, P2, Xc)
 Else
 xA = Xc
 Xc = Xd
 Xd = xB - oneMinusTau * (xB - xA)
 Fc = Fd
 Fd = CalcAD(Variates, n, C1, A1, B1, P1, C2, A2, B2, P2, Xd)
 End If
 Loop While iter < MaxIter And (Abs(Fd - Fc) > tolerance)
End Function

Const MaxIter = 1000
Dim Xc As Single, Xd As Single
Dim Fc As Single, Fd As Single
Dim oneMinusTau As Single
Dim iter As Integer

iter = 0
oneMinusTau = 1 - (Sqr(5) - 1) / 2
Xc = xA + oneMinusTau * (xB - xA)
Fc = CalcAD(Variates, n, C1, A1, B1, P1, C2, A2, B2, P2, Xc)
Xd = xB - oneMinusTau * (xB - xA)
Fd = CalcAD(Variates, n, C1, A1, B1, P1, C2, A2, B2, P2, Xd)
Do
 iter = iter + 1
 If Fc < Fd Then
 xB = Xd
 Xd = Xc
 Xc = xA + oneMinusTau * (xB - xA)
 Fd = Fc
 Fc = CalcAD(Variates, n, C1, A1, B1, P1, C2, A2, B2, P2, Xc)
 Else
 xA = Xc
 Xc = Xd
 Xd = xB - oneMinusTau * (xB - xA)
 Fc = Fd
 Fd = CalcAD(Variates, n, C1, A1, B1, P1, C2, A2, B2, P2, Xd)
 End If
Loop While iter < MaxIter And (Abs(Fd - Fc) > tolerance)
Loop While Abs(xB - xA) > tolerance And iter < MaxIter
If iter <= MaxIter Then
 GoldenSearchMinM = Xc
Else
 GoldenSearchMinM = -31
End If
End Function
MinDistCl Module

Option Explicit
'Contains the Minimum Distance Routines for the Cl parameter.

' finds the Minimum Distance for the Cl parameter
Function MinDistCl(BestInd As IndividualRecord, X() As Single, n As Integer) As Single
 Dim MaxCl As Single
 With BestInd
 MaxCl = pvMaxLocParam
 End With
End Function

' Finds the minimum value within an interval.
' Mathematical Algorithms in VB for Scientist & Engineers
' Shammas, Nammar, 1996. pg 115-116
Function GoldenSearchMinCl(xA As Single, xB As Single, tolerance As Double, Variates() As Single, n As Integer, A1 As Single, B1 As Single, P1 As Single, _
 C2 As Single, A2 As Single, B2 As Single, P2 As Single, M As Single) As Single
 Const MaxIter = 1000
 Dim Xc As Single, Xd As Single
 Dim Fc As Single, Fd As Single
 Dim oneMinusTau As Single
 iter = 0
 oneMinusTau = 1 - (Sqr(5) - 1) / 2
 Xc = xA + oneMinusTau * (xB - xA)
 Fc = CalcAD(Variates, n, Xc, A1, B1, P1, C2, A2, B2, P2, M)
 Xd = xB - oneMinusTau * (xB - xA)
 Fd = CalcAD(Variates, n, Xd, A1, B1, P1, C2, A2, B2, P2, M)
 Do
 iter = iter + 1
 If Fc < Fd Then
 xB = Xd
 Xd = Xc
 Xc = xA + oneMinusTau * (xB - xA)
 Fd = Fc
 Fc = CalcAD(Variates, n, Xc, A1, B1, P1, C2, A2, B2, P2, M)
 Else
 xA = Xc
 Xc = Xd
 Xd = xB - oneMinusTau * (xB - xA)
 End If
 Loop While iter < MaxIter
 GoldenSearchMinCl = Fc
End Function

100
Fc = Fd
Fd = CalcAD(Variates, n, Xd, A1, B1, P1, C2, A2, B2, P2, M)
End If
Loop While Abs(xB - xA) > tolerance And iter < MaxIter
If iter <= MaxIter Then
 GoldenSearchMinC1 = Xc
Else
 GoldenSearchMinC1 = -31
End If
End Function
MinDistC2 Module

Option Explicit

' finds the Minimum Distance for the C2 parameter

Function MinDistC2(BestInd As IndividualRecord, X() As Single, n As Integer) As Single
 Dim MaxCl As Single
 With BestInd
 MaxCl = pvBiggestVariate - pvSmallestParam
 MinDistC2 = GoldenSearchMinC2(pvCl + pvSmallestParam, MaxCl, 0.0001, X, n, .Cl, .A1, .B1, .P1,
 End With
End Function

' Finds the minimum value within an interval.
' Mathematical Algorithms in VB for Scientist & Engineers
' Shammas, Nammar, 1996. pg 115-116
Function GoldenSearchMinC2(xA As Single, xB As Single, tolerance As Double, Variates() As Single, n
As Integer, C1 As Single, A1 As Single, B1 As Single, P1 As Single, _
 A2 As Single, B2 As Single, P2 As Single, M As Single) As Single
 Const Maxlter = 1000
 Dim Xc As Single, Xd As Single
 Dim Fc As Single, Fd As Single
 Dim oneMinusTau As Single
 Dim iter As Integer
 iter = 0
 oneMinusTau = 1 - (Sqr(5) - 1) / 2
 Xc = xA + oneMinusTau * (xB - xA)
 Fc = CalcAD(Variates, n, C1, A1, B1, P1, Xc, A2, B2, P2, M)
 Xd = xB - oneMinusTau * (xB - xA)
 Fd = CalcAD(Variates, n, C1, A1, B1, P1, Xd, A2, B2, P2, M)
 Do
 iter = iter + 1
 If Fc < Fd Then
 xB = Xd
 Xd = Xc
 Xc = xA + oneMinusTau * (xB - xA)
 Fd = Fc
 Fc = CalcAD(Variates, n, C1, A1, B1, P1, Xc, A2, B2, P2, M)
 Else
 xA = Xc
 Xc = xB - oneMinusTau * (xB - xA)
 Fc = Fd
 Fd = CalcAD(Variates, n, C1, A1, B1, P1, Xc, A2, B2, P2, M)
 End If
 If Fd - Fc < tolerance Then
 GoldenSearchMinC2 xA, xB, tolerance, Variates, n, C1, A1, B1, P1, _
 A2, B2, P2, M
 End If
 Loop
 GoldenSearchMinC2 xA, xB, tolerance, Variates, n, C1, A1, B1, P1, _
 A2, B2, P2, M
End Function
Else
 xA = Xc
 Xc = Xd
 Xd = xB - oneMinusTau * (xB - xA)
 Fc = Fd
 Fd = CalcAD(Variates, n, C1, A1, B1, P1, Xd, A2, B2, P2, M)
End If
End Function

Loop While Abs(xB - xA) > tolerance And iter < MaxIter
If iter <= MaxIter Then
 GoldenSearchMinC2 = Xc
Else
 GoldenSearchMinC2 = -31
End If
End If
End Function
Option Explicit

' Contains the Anderson Darling Test routines.

' Converts the variates to their CDF probability
' and then calculates the Anderson-Darling Statistic
Function CalcAD(X() As Single, n As Integer, C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single, A2 As Single, B2 As Single, P2 As Single, M As Single) As Single
 Dim Z(500) As Single
 Call XtoZ(X, Z, n, C1, A1, B1, P1, C2, A2, B2, P2, M)
 CalcAD = AndersonDarling(Z, n)
End Function

' Translates the variates to their cdf values.
Sub XtoZ(X() As Single, Z() As Single, n As Integer, C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single, A2 As Single, B2 As Single, P2 As Single, M As Single)
 Dim i As Integer
 For i = 1 To n
 Z(i) = GGD9cdf(X(i), C1, A1, B1, P1, C2, A2, B2, P2, M)
 If Z(i) >= 1 Then
 Z(i) = 0.999999
 Else
 If Z(i) = 0 Then Z(i) = 0.000001
 End If
 Next i
End Sub

' Anderson Darling test statistic
' Stephens. "EDF Statistics" JASA Vol 69, No.347, Pg 731
Function AndersonDarling(Z() As Single, n As Integer) As Single
 Dim i As Integer
 Dim Sum As Single
 For i = 1 To n
 Sum = Sum + (2 * i - 1) * (Log(Z(i)) + Log(1 - Z(n + 1 - i)))
 Next i
 AndersonDarling = -Sum / n - n
End Function

104
Sort Module

Option Explicit
' Contains routines for sorting an array into ascending order

' sorts an array into ascending order
' Mumford, pg. 140
Sub RSort(X() As Single, n As Integer)

 Dim i As Integer
 Dim j As Integer
 Dim Low As Integer

 For i = 1 To n - 1
 Low = i
 For j = i + 1 To n
 If X(j) < X(Low) Then
 Low = j
 End If
 Next j
 Call Swap(X(i), X(Low))
 Next i

End Sub

' Swaps two real values
Sub Swap(r1 As Single, r2 As Single)

 Dim temp As Single

 temp = r1
 r1 = r2
 r2 = temp

End Sub
Option Explicit
'Contains the Random Variate Generation routines.

' Generate the random variates.

Sub GenerateRV(C1 As Single, A1 As Single, B1 As Single, P1 As Single, _
 C2 As Single, A2 As Single, B2 As Single, P2 As Single, _
 M As Single, RV() As Single, n As Integer)
 Dim i As Integer
 For i = 1 To n
 RV(i) = GGD9RVG(C1, A1, B1, P1, C2, A2, B2, P2, M)
 Next i
End Sub

' Returns a 9-parameter Mixed Generalized Gamma Variate
' m = mixing proportion
Function GGD9RVG(C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single, A2 As Single, B2 As Single, P2 As Single, M As Single) As Single
 If M <= M Then
 GGD9RVG = GGD4RVG(C1, A1, B1, P1)
 Else
 GGD9RVG = GGD4RVG(C2, A2, B2, P2)
 End If
End Function

' Returns a 4-parameter Generalized Gamma Dist variate
' Location scale power/shape power
' Harter c a b p
' for b>.25
' Transforms from Tadikamila "Computing", (1979)
Function GGD4RVG(c As Single, a As Single, b As Single, p As Single) As Single
 Dim Z As Single
 Dim X As Single
 Dim Y As Single

 Z = GBH(b)
 X = Z ^ (1 / p)

 GGD4RVG = X * a + c
End Function
' Cheng & Feast (Comm of the ACM, 1980)
' For Alp > 0.25
' Found in Tadikamalla & Johnston (1980)
' Amer J. of Math. & Manage Sci. "A complete guide to
' Gamma Variate Generation"
Function GBH(Alp As Single) As Single

Dim a As Single
Dim b As Single
Dim c As Single
Dim d As Single
Dim t As Single
Dim h1 As Single
Dim h2 As Single
Dim U As Single
Dim U1 As Single
Dim U2 As Single
Dim w As Single

a = Alp - 0.25
b = Alp / a
c = 2# / a
d = c + 2#
t = 1# / Sqr(Alp)
h1 = (0.4417 + 0.245 * t / Alp) * t
h2 = (0.222 - 0.043 * t) * t

line1:
 U1 = rnd
 U = rnd
 U2 = U1 + h1 * U - h2
 If (U2 <= 0) Then GoTo line1:
 If (U2 > 1) Then GoTo line1:
 w = b * (U1 / U2) ^ 4
 If w = 0 Then GoTo line1: 'added since Excel generates rng=0
 If c * U2 - d + w + 1 / w <= 0 Then GoTo line4:
 'Goto line 4
 If c * Log(U2) - Log(w) + w - 1 >= 0 Then GoTo line1:

line4:
GBH = a * w
End Function
Option Explicit

' Contains the routines for calculation the Integrated Distance.

' This finds the upper limit of integration
' the point at which F(X)>0.999
' Xin is the point to start the search for the upper limit.
Function FindUppLim(Cl As Single, A1 As Single, B1 As Single, PI As Single, C2 As Single, A2 As Single, B2 As Single, P2 As Single, M As Single, Xin As Single) As Single

 Dim X As Single

 X = Xin

 While (GGD9cdf(X, Cl, A1, B1, PI, C2, A2, B2, P2, M) < 0.999) And (X < 50)
 X = X + 0.05
 Wend

 FindUppLim = X

End Function

' This compares the pdf of the estimated and true parameters at
' point x and then squares the difference
Function Comp(X As Single, Cl As Single, A1 As Single, B1 As Single, PI As Single, C2 As Single, A2 As Single, B2 As Single, P2 As Single, M As Single, _
 TCI As Single, TA1 As Single, TB1 As Single, TP1 As Single, TC2 As Single, TA2 As Single, TB2 As Single, TP2 As Single, TM As Single) As Single

 Dim dif As Single

 dif = GGD9pdf(X, Cl, A1, B1, PI, C2, A2, B2, P2, M) - GGD9pdf(X, TCI, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM)

 Comp = dif ^ 2

End Function
Function IntegratedDistance(xFirst As Single, xLast As Single, nSubIntervals As Integer, _
 C1 As Single, A1 As Single, B1 As Single, P1 As Single, C2 As Single, A2 As Single, B2 As Single, P2
 As Single, M As Single, _
 TC1 As Single, TA1 As Single, TB1 As Single, TP1 As Single, TC2 As Single, TA2 As Single, TB2 As
 Single, TP2 As Single, TM As Single) As Single

Dim xA As Single, xB As Single, xJ As Single
Dim h As Single, hDiv2 As Single
Dim Sum As Single, area As Single
Static Xk(5) As Single
Static Ak(5) As Single
Dim n As Integer, i As Integer, j As Integer

 Xk(0) = -0.9324695142
 Xk(1) = -0.6612093865
 Xk(2) = -0.2386191861
 Xk(3) = 0.2386191861
 Xk(4) = 0.6612093865
 Xk(5) = 0.9324695142
 Ak(0) = 0.1713244924
 Ak(1) = 0.360761573
 Ak(2) = 0.4679139346
 Ak(3) = 0.4679139346
 Ak(4) = 0.360761573
 Ak(5) = 0.1713244924
 area = 0
 n = nSubIntervals
 h = (xLast - xFirst) / n
 xA = xFirst
 For i = 1 To n
 Sum = 0
 xB = xA + h
 hDiv2 = h / 2
 'obtain area of sub-interval
 For j = 0 To 5
 xJ = xA + hDiv2 * (Xk(j) + 1)
 Sum = Sum + Ak(j) * Comp(xJ, C1, A1, B1, P1, C2, A2, B2, P2, M, _
 TC1, TA1, TB1, TP1, TC2, TA2, TB2, TP2, TM)
 Next j
 area = area + hDiv2 * Sum
 xA = xB
 Next i

 IntegratedDistance = area
End Function
Appendix C Summarization Code
Summary Mod

'Summarizes all the worksheets in the active book and checks for completeness
Sub Driver()
 Worksheets.Add before:=Sheets(1)
 ActiveSheet.Name = "Summary"
 Call SummaryHeader

 Call SummarizeAll
 Call setupPrintDriver
 Call Check

 ActiveWorkbook.Save
 Beep
End Sub

'Summarizes all the worksheets in the active book.
"Summary Worksheet" must be in activebook.
Sub SummarizeAll()
 Dim wsht As Object
 For Each wsht In ActiveWorkbook.Worksheets
 wsht.Select
 If Not wsht.Name = "Summary" Then
 Call Summarize
 End If
 Next wsht
End Sub

'Summarize the active sheet.
"Summary Worksheet" must be in activebook.
Sub Summarize()

 Dim RowOut As Integer
 Dim NumRows As Integer
 Dim NumReplications As Integer
 Dim d As String

 'Count number of times MDE and MLE are better
 Range("Z1").FormulaR1C1 = "=COUNTIF(R2C2:R1001C2,""MDE"""")
 Range("Z2").FormulaR1C1 = "=COUNTIF(R2C2:R1001C2,""MLE"""")
With Sheets("summary")
mleDistCol = GetCol("MLE Dist")
mdeDistCol = GetCol("MDE Dist")
MLETime = GetCol("MLE Time")
MDETime = GetCol("MDE Time")

RowOut = .Range("A1").CurrentRegion.Rows.Count + 1

Call AverageSummary(MLEAveTime, MDEAveTime, NumReplications)
d = ActiveSheet.Name

.Cells(RowOut, 1) = Range("A1").NoteText
.Cells(RowOut, 2).FormulaR1C1 = Range("z1").Value / (Range("z1").Value + Range("z2").Value)

.Cells(RowOut, 3).FormulaR1C1 = "=AVERAGE(" & ActiveSheet.Name & "!R2C" & mleDistCol & ":R1001C" & mleDistCol & ")"
.Cells(RowOut, 4).FormulaR1C1 = "=STDEV(" & ActiveSheet.Name & "!R2C" & mleDistCol & ":R1001C" & mleDistCol & ")"
.Cells(RowOut, 5).FormulaR1C1 = "=AVERAGE(" & ActiveSheet.Name & "!R2C" & mdeDistCol & ":R1001C" & mdeDistCol & ")"
.Cells(RowOut, 6).FormulaR1C1 = "=STDEV(" & ActiveSheet.Name & "!R2C" & mdeDistCol & ":R1001C" & mdeDistCol & ")"

.Cells(RowOut, 7) = Format(MLEAveTime, "0.0")
.Cells(RowOut, 8) = Format(MDEAveTime, "0.0")
.Cells(RowOut, 9) = NumReplications
.Cells(RowOut, 10) = d

.Select
End With

End Sub

' This calculates some statistics for the summary

Sub AverageSummary(MLEAveTime, MDEAveTime, NumRep)
Dim i, sec, Min, TimeTot, TimeCol, FitCol, FitTot, NumRows As Integer
Dim TimeIn As String
Dim UppLimTrue As Single, UppLim As Single

MLECol = GetCol("MLE Time")
MDECol = GetCol("MDE Time")

mleTot = 0
mdeTot = 0
NumRows = Range("A1").CurrentRegion.Rows.Count

112
For i = 2 To NumRows

 MLETimeIn = Cells(i, MLECol).Value
 MLEsec = Val(Right(Left(MLETimeIn, 4), 2))
 MLEMin = Val(Left(MLETimeIn, 1))
 mleTot = mleTot + 60 * MLEMin + MLEsec

 MDETimeIn = Cells(i, MDECol).Value
 MDEsec = Val(Right(Left(MDETimeIn, 4), 2))
 MDEMin = Val(Left(MDETimeIn, 1))
 mdeTot = mdeTot + 60 * MDEMin + MDEsec

Next i

NumRepl = NumRows - 1
MLEAveTime = mleTot / NumRepl
MDEAveTime = mdeTot / NumRepl

End Sub

Function GetCol(Stringln)
 For i = 1 To 256
 If Cells(1, i) = Stringln Then
 GetCol = i
 Exit For
 End If
 Next i
End Function

' SummaryHeader Macro
' Macro recorded 1/22/98 by Dean Boerrigter

Sub SummaryHeader()
 Range("A1").Formula = "Distribution"
 Range("B1") = "%MDE Better"
 Range("C1") = "MLE Ave Dist"
 Range("D1") = "MLE Std Dist"
 Range("E1") = "MDE Ave Dist"
 Range("F1") = "MDE Std Dist"
 Range("G1") = "MLE Ave Time (s)"
 Range("H1") = "MDE Ave Time (s)"
 Range("I1") = "Replication"
 Range("J1") = "Wsht"
 Range("B2").Select
 ActiveWindow.FreezePanes = True
End Sub
Check Mod

' This checks for completeness
'
Sub Check()
Dim hold As String

Range("a1").Sort Key1:=Range("A2"), Order1:=xlAscending, Key2:=Range _
("B2"), Order2:=xlAscending, Key3:=Range("J2"), Order3:=xlDescending, Header:=xlGuess,
OrderCustom:=1, _
 MatchCase:=False, Orientation:=xlTopToBottom

hold = Range("a2").Value
For i = 2 To Range("a1").CurrentRegion.Rows.Count
 If Cells(i, 1) <> hold Then
 hold = Cells(i, 1)
 Range(Cells(i - 1, 1), Cells(i - 1, 12)).Select
 Call BorderLines
 End If

 If Cells(i, 2).Value = Cells(i - 1, 2).Value Then
 Cells(i, 12) = "**""**
 End If
Next i
End Sub

' Puts a border beneath selection
'
Sub BorderLines()
 With Selection.Borders(xlBottom)
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
End Sub
Print Mod

' Setups up Summary Sheet for Printing.

Sub setupPrintDriver()
 Call ReplaceSingleDistribution
 Call SplitVariates
 Call SetupPrintSummary
End Sub

' SetupPrintSummary Macro
' Macro recorded 2/23/98 by Dean Boerrigter

Sub SetupPrintSummary()

 Columns("A:K").EntireColumn.AutoFit

 Range("C2:C400").NumberFormat = "0.00%"

 Range("D2:G400").NumberFormat = "0.00000"

 Columns("H:I").EntireColumn.Hidden = True

 With ActiveSheet.PageSetup
 .LeftHeader = "&D"
 .CenterHeader = "&A"
 .RightHeader = "&F"
 .LeftFooter = ""
 .CenterFooter = ""
 .RightFooter = ""
 .FitToPagesWide = 1
 .FitToPagesTall = 1
 End With

End Sub

' Macro2 Macro
' Macro recorded 2/23/98 by Dean Boerrigter

Sub ReplaceSingleDistribution()

 Columns("A:A").Select
 Selection.Replace What:="", 99999,0,0,1", Replacement:="""
 LookAt:=xlPart, SearchOrder:=xlByRows, MatchCase:=False

End Sub

115
'SplitVariates Macro
Macro recorded 2/24/98 by Dean Boerrigter

Sub SplitVariates()
 Range("B1").Select
 Selection.EntireColumn.Insert
 Range("A1").CurrentRegion.Select
 Selection.TextToColumns Destination:=Range("A1"), DataType:=xlDelimited, TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=True, Semicolon:=False, Comma:=False, Space:=False, Other:=True, OtherChar:="", FieldInfo:=Array(Array(1, 1), Array(2, 1))
 Range("B1").FormulaR1C1 = "Variates"
End Sub
Open Files Mod

Public Const pvDir = "C:\AFIT\Data\"
Public Const pvFileString = "MEFeb08"

' OpenFiles Macro
' Macro recorded 1/24/98 by Dean Boerrigter
'
Sub OpenFiles()
Dim FileName As String
On Error Resume Next
For i = 1 To 26
 FileName = pvFileString & Chr(CharCode:=i + 96) & ".xls"
 Workbooks.Open FileName:=pvDir & FileName
 ' Call CopyToSummaryWorkbook
 ' Windows(FileName).Activate
 ' If ActiveWorkbook.Name <> ThisWorkbook.Name Then
 ' ActiveWorkbook.Close
 ' End If
Next i

' Windows("Summarize Code.xls").Activate
End Sub

' CopyToSummaryWorkbook Macro
' Macro recorded 1/22/98 by Dean Boerrigter
'
Sub CopyToSummaryWorkbook()
Dim nameIt As String
Dim SummaryWbk As Object

 nameIt = ActiveWorkbook.Name
 Sheets("Output").Copy after:=ThisWorkbook.Sheets(1)

 ActiveSheet.Name = nameIt
End Sub
' Renames the sheets
'
Sub RenameSheets()
Dim wsht As Object
Dim nameIt As String

nameIt = Application.InputBox("Rename sheets")

i = 0
For Each wsht In ActiveWorkbook.Worksheets
 wsht.Select
 If wsht.Name <> "Summary" Then
 i = i + 1
 wsht.Name = nameIt & i
 End If
Next wsht

End Sub

Vita

Captain Dean Boerrigter was born 21 May 1970 in Washington, D. C. He graduated from Oxon Hill High School in 1988, at which time he entered undergraduate studies at the U.S. Air Force Academy in Colorado. He graduated with a Bachelor of Science degree in Operations Research in May 1992. He received his Air Force commission upon graduation.

His first assignment was to the Air Force Wartime Manpower and Personnel Readiness Team (AFWMRPT) at Fort Ritchie, MD where he worked as a Wartime Analyst for the Air Staff. In August 1996, he entered the School of Engineering, Air Force Institute of Technology. His follow-on assignment was to AFOTEC at Kirtland AFB, NM.

Permanent Address: 1665 Elkhorn Dr
Arlington, NE 68002
wvqr71a@prodigy.com
Parameter Estimation Of The Mixed Generalized Gamma Distribution Using Maximum Likelihood Estimation And Minimum Distance Estimation

Advisors: Maj Ed Pohl, epohl@afit.af.mil ; Maj William P. Murdock, wmurdock@afit.af.mil DSN 225-3636

The Generalized Gamma is an extremely flexible distribution that is useful for reliability modeling. Among its many special cases are the Weibull and Exponential distributions. A mixture of Generalized Gamma Distributions is even more useful because multiple causes of failure can be simultaneously modeled. This research studied parameter estimation of the special cases of the Mixed Generalized Gamma Distribution and built upon them until the full nine-parameter distribution was being estimated.

Two techniques were used to estimate the parameters of each distribution. The first technique used was the Method of Maximum Likelihood. The log likelihood equation was maximized using a Genetic Algorithm. The second technique used was the Method of Minimum Distance. This technique takes the Maximum Likelihood parameter estimate as initial estimate. With this initial estimate, the mixture and the first location parameter are sequentially varied to minimize the Anderson-Darling statistic between the estimated cumulative distribution function and the empirical distribution function. These two parameters are then fixed at their Minimum Distance values and the remaining parameters are re-estimated using Maximum Likelihood.

Minimum Distance Estimation was demonstrated to improve the parameter estimates from Maximum Likelihood for almost all of the special case distributions tested. It did not improve the estimate for the full nine-parameter Mixed Generalized Gamma Distribution, but this was because the technique used to find the Maximum Likelihood parameter estimates performed poorly and did not return a good initial estimate for Minimum Distance.